ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the gravitational wave energy density of the Universe using Earths ring

71   0   0.0 ( 0 )
 نشر من قبل Jan Harms
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The search for gravitational waves is one of todays major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earths free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earths structure. Making use of our detailed understanding of Earths normal modes, numerical models are employed for the first time to accurately calculate Earths gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earths oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

قيم البحث

اقرأ أيضاً

Much of the information we hope to extract from the gravitational-waves signatures of compact binaries is only obtainable when we can accurately constrain the inclination of the source. In this paper, we discuss in detail a degeneracy between the mea surement of the binary distance and inclination which limits our ability to accurately measure the inclination using gravitational waves alone. This degeneracy is exacerbated by the expected distribution of events in the universe, which leads us to prefer face-on systems at a greater distance. We use a simplified model that only considers the binary distance and orientation, and show that this gives comparable results to the full parameter estimates obtained from the binary neutron star merger GW170817. For the advanced LIGO-Virgo network, it is only signals which are close to edge-on, with an inclination greater than $sim 75^{circ}$ that will be distinguishable from face-on systems. For extended networks which have good sensitivity to both gravitational wave polarizations, for face-on systems we will only be able to constrain the inclination of a signal with SNR 20 to be $45^{circ}$ or less, and even for loud signals, with SNR of 100, the inclination of a face-on signal will only be constrained to $30^{circ}$. For black hole mergers observed at cosmological distances, in the absence of higher modes or orbital precession, the strong degeneracy between inclination and distance dominates the uncertainty in measurement of redshift and hence the masses of the black holes.
In this paper, we study the polarization of a gravitational wave (GW) emitted by an astrophysical source at a cosmic distance propagating through the Friedmann-Lema^itre-Robertson-Walk universe. By considering the null geodesic deviations, we first p rovide a definition of the polarization of the GW in terms of the Weyl scalars with respect to a parallelly-transported frame along the null geodesics, and then show explicitly that, due to different effects of the expansion of the universe on the two polarization modes, the so-called + and $times$ modes, the polarization angle of the GW changes generically, when it is propagating through the curved background. By direct computations of the polarization angle, we show that different epochs, radiation-, matter- and $Lambda$-dominated, have different effects on the polarization. In particular, for a GW emitted by a binary system, we find explicitly the relation between the change of the polarization angle $|Delta varphi|$ and the redshift $z_s$ of the source in different epochs. In the $Lambda$CDM model, we find that the order of $|Delta varphi|{eta_0 F}$ is typically $O(10^{-3})$ to $O(10^3)$, depending on the values of $z_s$, where $eta_0$ is the (comoving) time of the current universe, and $FequivBig(frac{5}{256}frac{1}{tau_{obs}}Big)^{3/8}left(G_NM_cright)^{-5/8}$ with $tau_{obs}$ and $M_c$ being, respectively, the time to coalescence in the observers frame and the chirp mass of the binary system.
LIGO and Virgo have recently observed a number of gravitational wave (GW) signals that are fully consistent with being emitted by binary black holes described by general relativity. However, there are theoretical proposals of exotic objects that can be massive and compact enough to be easily confused with black holes. Nevertheless, these objects differ from black holes in having nonzero tidal deformabilities, which can allow one to distinguish binaries containing such objects from binary black holes using GW observations. Using full Bayesian parameter estimation, we investigate the possibility of constraining the parameter space of such black hole mimickers with upcoming GW observations. Employing perfect fluid stars with a polytropic equation of state as a simple model that can encompass a variety of possible black hole mimickers, we show how the observed masses and tidal deformabilities of a binary constrain the equation of state. We also show how such constraints can be used to rule out some simple models of boson stars.
The observation of gravitational-wave signals from merging black-hole binaries enables direct measurement of the properties of the black holes. An individual observation allows measurement of the black-hole masses, but only limited information about either the magnitude or orientation of the black hole spins is available, primarily due to the degeneracy between measurements of spin and binary mass ratio. Using the first six black-hole merger observations, we are able to constrain the distribution of black-hole spins. We perform model selection between a set of models with different spin population models combined with a power-law mass distribution to make inferences about the spin distribution. We assume a fixed power-law mass distribution on the black holes, which is supported by the data and provides a realistic distribution of binary mass-ratio. This allows us to accurately account for selection effects due to variations in the signal amplitude with spin magnitude, and provides an improved inference on the spin distribution. We conclude that the first six LIGO and Virgo observations (Abbott et al. 2016a, 2017a,b,c) disfavour highly spinning black holes against low spins by an odds-ratio of 15:1; thus providing strong constraints on spin magnitudes from gravitational-wave observations. Furthermore, we are able to rule out a population of binaries with completely aligned spins, even when the spins of the individual black holes are low, at an odds ratio of 22,000:1, significantly strengthening earlier evidence against aligned spins (Farr et al. 2017). These results provide important information that will aid in our understanding on the formation processes of black-holes.
This work relates to the famous experiments, performed in 1975 and 1979 by Werner et al., measuring neutron interference and neutron Sagnac effects in the earths gravitational field. Employing the method of Stodolsky in its weak field approximation, explicit expressions are derived for the two phase shifts, which turn out to be in agreement with the experiments and with the previously obtained expressions derived from semi-classical arguments: these expressions are simply modified by relativistic correction factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا