ترغب بنشر مسار تعليمي؟ اضغط هنا

Newtonian-noise cancellation in full-tensor gravitational-wave detectors

119   0   0.0 ( 0 )
 نشر من قبل Jan Harms
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Terrestrial gravity noise, also known as Newtonian noise, produced by ambient seismic and infrasound fields will pose one of the main sensitivity limitations in low-frequency, ground-based, gravitational-wave (GW) detectors. It was estimated that this noise foreground needs to be suppressed by about 3 -- 5 orders of magnitude in the frequency band 10,mHz to 1,Hz, which will be extremely challenging. In this article, we present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. The method uses optimal combinations of tensor channels and environmental sensors such as seismometers and microphones to reduce gravity noise. It makes explicit use of the direction of propagation of a GW, and can therefore either be implemented in directional searches for GWs or in observations of known sources. We show that suppression of the Newtonian-noise foreground is greatly facilitated using the extra strain channels in full-tensor GW detectors. Only a modest number of auxiliary, high-sensitivity environmental sensors are required to achieve noise suppression by a few orders of magnitude.

قيم البحث

اقرأ أيضاً

Signal extraction out of background noise is a common challenge in high precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal to noise ratio of the detection, witness sensors are often us ed to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is non-stationary, linear techniques often fail or are sub-optimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove non-stationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational wave observatory, where we could obtain an improvement of the detector gravitational wave reach without introducing any bias on the source parameter estimation.
Spring-antispring systems have been investigated as possible low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low va lues, and at the same time maintain a compact design of the isolation system. It was argued though that thermal noise in spring-antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present a detailed calculation of the suspension thermal noise for a specific spring-antispring system, namely the Roberts linkage. We find a concise expression of the suspension thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. It is found that while the Roberts linkage can provide strong seismic isolation due to a very low fundamental resonance frequency, its thermal noise is rather determined by the dimension of the system. We argue that this is true for all horizontal mechanical isolation systems with spring-antispring dynamics. This imposes strict requirements on mechanical spring-antispring systems for the seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts: atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer.
The discovery of gravitational waves, which are ripples of space-time itself, opened a new window to test general relativity, because it predicts that there are only plus and cross polarizations for gravitational waves. For alternative theories of gr avity, there may be up to six polarizations. The measurement of the polarization is one of the major scientific goals for future gravitational wave detectors. To evaluate the capability of the detector, we need to use the frequency dependent response functions averaged over the source direction and polarization angle. We derive the full analytical formulas of the averaged response functions for all six possible polarizations and present their asymptotic behaviors based on these analytical formulas. Compared with the numerical simulation, the full analytical formulas are more efficient and valid for any equal-arm interferometric gravitational wave detector without optical cavities in the arms and for a time-delay-interferometry Michelson combination.
158 - Jan Harms , Stefan Hild 2014
In this article we propose a new method for reducing Newtonian noise in laser-interferometric gravitational-wave detectors located on the Earths surface. We show that by excavating meter-scale recesses in the ground around the main test masses of a g ravitational wave detector it is possible to reduce the coupling of Rayleigh wave driven seismic disturbances to test mass displacement. A discussion of the optimal recess shape is given and we use finite element simulations to derive the scaling of the Newtonian noise suppression with the parameters of the recess as well as the frequency of the seismic excitation. Considering an interferometer similar to an Advance LIGO configuration, our simulations indicate a frequency dependent Newtonian noise suppression factor of 2 to 4 in the relevant frequency range for a recesses of 4m depth and a width and length of 11m and 5m, respectively. Though a retrofit to existing interferometers seems not impossible, the application of our concept to future infrastructures seems to provide a better benefit/cost ratio and therefore a higher feasibility.
Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from m assive astrophysical sources. Here we examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the 0.1 -- 10,Hz band. We describe the plethora of potential astrophysical sources in this band and make estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be extremely challenging to overcome.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا