ترغب بنشر مسار تعليمي؟ اضغط هنا

The compound lambda-(BETS)2FeCl4 provides an effective demonstration of the interaction of pi-conduction electron and d-electron localized moment systems in molecular crystalline materials where antiferromagnetic insulating and magnetic field induced superconducting states can be realized. The metal-insulator transition has been thought to be cooperative, involving both the itinerant pi- electron and localized d-electron spins where antiferromagnetic order appears in both systems simultaneously. However, recent specific heat data has indicated otherwise [Akiba et al., J. Phys. Soc. Japan 78,033601(2009)]: although the pi-electron system orders antiferromagnetically and produces a metal-insulator transition, a mysterious paramagnetic d-electron state remains. We report 57Fe Mossbauer measurements that support the paramagnetic model, provided the d-electron spins remain in a fast relaxation state below the transition. From the measured hyperfine fields, we also determine the temperature dependence of the pi-d electron exchange field.
Complementary $^{77}$Se nuclear magnetic resonance (NMR) and electrical transport have been used to correlate the spin density dynamics with the subphases of the field-induced spin density wave (FISDW) ground state in tmt. We find that the peaks in t he spin-lattice relaxation rate 1/T$_1$ appear within the metal-FISDW phase boundary and/or at first-order subphase transitions. In the quantum limit above 25 T, the NMR data gives an insight into the FISDW electronic structure.
Dielectric relaxation is universal in characterizing polar liquids and solids, insulators, and semiconductors, and the theoretical models are well developed. However, in high magnetic fields, previously unknown aspects of dielectric relaxation can be revealed and exploited. Here, we report low temperature dielectric relaxation measurements in lightly doped silicon in high dc magnetic fields B both parallel and perpendicular to the applied ac electric field E. For B//E, we observe a temperature and magnetic field dependent dielectric dispersion e(w)characteristic of conventional Debye relaxation where the free carrier concentration is dependent on thermal dopant ionization, magnetic freeze-out, and/or magnetic localization effects. However, for BperpE, anomalous dispersion emerges in e(w) with increasing magnetic field. It is shown that the Debye formalism can be simply extended by adding the Lorentz force to describe the general response of a dielectric in crossed magnetic and electric fields. Moreover, we predict and observe a new transverse dielectric response EH perp B perp E not previously described in magneto-dielectric measurements. The new formalism allows the determination of the mobility and the ability to discriminate between magnetic localization/freeze out and Lorentz force effects in the magneto-dielectric response.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا