ترغب بنشر مسار تعليمي؟ اضغط هنا

$^{77}$Se NMR investigation of the field-induced spin-density-wave transitions in (TMTSF)$_2$ClO$_4$

121   0   0.0 ( 0 )
 نشر من قبل James S. Brooks
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complementary $^{77}$Se nuclear magnetic resonance (NMR) and electrical transport have been used to correlate the spin density dynamics with the subphases of the field-induced spin density wave (FISDW) ground state in tmt. We find that the peaks in the spin-lattice relaxation rate 1/T$_1$ appear within the metal-FISDW phase boundary and/or at first-order subphase transitions. In the quantum limit above 25 T, the NMR data gives an insight into the FISDW electronic structure.



قيم البحث

اقرأ أيضاً

We have investigated the origin of the large increase in spin-echo decay rates for the $^{77}$Se nuclear spins at temperatures near to $T=30K$ in the organic superconductor (TMTSF)$_2$ClO$_4$. The measured angular dependence of $T_2^{-1}$ demonstrate s that the source of the spin-echo decays lies with carrier density fluctuations rather than fluctuations in TMTSF molecular orientation. The very long time scales are directly associated with the dynamics of the anion ordering occurring at $T=25K$, and the inhomogeneously broadened spectra at lower temperatures result from finite domain sizes. Our results are similar to observations of line-broadening effects associated with charge-ordering transitions in quasi-two dimensional organic conductors.
138 - K. Hiraki 2007
We have performed $^{77}$Se NMR on a single crystal sample of the field induced superconductor $lambda$-(BETS)$_{2}$FeCl$_{4}$. Our results obtained in the paramagnetic state provide a microscopic insight on the exchange interaction $J$ between the s pins textbf{s} of the BETS $pi$ conduction electrons and the Fe localized $d$ spins textbf{S}. The absolute value of the Knight shift textbf{K} decreases when the polarization of the Fe spins increases. This reflects the ``negative spin polarization of the $pi$ electrons through the exchange interaction $J$. The value of $J$ has been estimated from the temperature and the magnetic field dependence of textbf{K} and found in good agreement with that deduced from transport measurements (L. Balicas textit{et al}. Phys. Rev. Lett. textbf{87}, 067002 (2001)). This provides a direct microscopic evidence that the field induced superconductivity is due to the compensation effect predicted by Jaccarino and Peter (Phys. Rev. Lett. textbf{9}, 290 (1962)). Furthermore, an anomalous broadening of the NMR line has been observed at low temperature, which suggests the existence of charge disproportionation in the metallic state neighboring the superconducting phase.
139 - N.Matsunaga , A.Ayari , P.Monceau 2002
Magnetoresistance measurements have been carried out along the highly conducting a axis in the FISDW phase of hydrogened and deuterated (TMTSF)$_2$ClO$_4$ for various cooling rates through the anion ordering temperature. With increasing the cooling r ate, a) the high field phase boundary $beta_{rm {HI}}$, observed at 27 T in hydrogened samples for slowly cooled, is shifted towards a lower field, b) the last semimetallic SDW phase below $beta_{rm {HI}}$ is suppressed, and c) the FISDW insulating phase above $beta_{rm {HI}}$ is enhanced in both salts. The cooling rate dependence of the FISDW transition and of $beta_{rm {HI}}$ in both salts can be explained by taking into account the peculiar SDW nesting vector stabilized by the dimerized gap due to anion ordering.
Magnetoresistance measurements on the quasi one-dimensional organic conductor (TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to 0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T phase diagram. We found a new boundary which subdivides the field induced spin density wave (FISDW) phase diagram into two regions. We showed that a low-temperature region of the FISDW diagram is characterized by a hysteresis behavior typical for the first order transitions, as observed in a number of studies. In contrast to the common believe, in high temperature region of the FISDW phase diagram, the hysteresis and, hence, the first order transitions were found to disappear. Nevertheless, sharp changes in the resistivity slope are observed both in the low and high temperature domains indicating that the cascade of transitions between different subphases exists over all range of the FISDW state. We also found that the temperature dependence of the resistance (at a constant B) changes sign at about the same boundary. We compare these results with recent theoretical models.
In order to study the spin density wave transition temperature (T_SDW) in (TMTSF)_2PF_6 as a function of magnetic field, we measured the magnetoresistance R_zz in fields up to 19 T. Measurements were performed for three field orientations B||a, b and c* at ambient pressure and at P = 5 kbar, that is nearly the critical pressure. For B||c* orientation we observed quadratic field dependence of T_SDW in agreement with theory and with previous experiments. For B||b and B||a orientations we have found no shift in T_SDW within 0.05 K, both at P=0 and P=5 kbar. This result is also consistent with theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا