ترغب بنشر مسار تعليمي؟ اضغط هنا

Debye relaxation in high magnetic fields

353   0   0.0 ( 0 )
 نشر من قبل James S. Brooks
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectric relaxation is universal in characterizing polar liquids and solids, insulators, and semiconductors, and the theoretical models are well developed. However, in high magnetic fields, previously unknown aspects of dielectric relaxation can be revealed and exploited. Here, we report low temperature dielectric relaxation measurements in lightly doped silicon in high dc magnetic fields B both parallel and perpendicular to the applied ac electric field E. For B//E, we observe a temperature and magnetic field dependent dielectric dispersion e(w)characteristic of conventional Debye relaxation where the free carrier concentration is dependent on thermal dopant ionization, magnetic freeze-out, and/or magnetic localization effects. However, for BperpE, anomalous dispersion emerges in e(w) with increasing magnetic field. It is shown that the Debye formalism can be simply extended by adding the Lorentz force to describe the general response of a dielectric in crossed magnetic and electric fields. Moreover, we predict and observe a new transverse dielectric response EH perp B perp E not previously described in magneto-dielectric measurements. The new formalism allows the determination of the mobility and the ability to discriminate between magnetic localization/freeze out and Lorentz force effects in the magneto-dielectric response.



قيم البحث

اقرأ أيضاً

The numerous phenomenological equations used in the study of the behaviour of single-domain magnetic nanoparticles are described and some issues clarified by means of qualitative comparison. To enable a quantitative textit{application} of the model b ased on the Debye (exponential) relaxation and the torque driving the Larmor precession, we present analytical solutions for the steady states in presence of circularly and linearly polarized AC magnetic fields. Using the exact analytical solutions, we can confirm the insight that underlies Rosensweigs introduction of the chord susceptibility for an approximate calculation of the losses. As an important consequence, it can also explain experiments, where power dissipation for both fields were found to be identical in root mean square sense. We also find that this approximation provides satisfactory numerical accuracy only up to magnetic fields for which the argument of the Langevin function reaches the value 2.8.
The process of magnetic relaxation was studied in bismuth ferrite BiFeO3 multiferroic micro-cubes obtained by means of microwave assisted Pechini process. Two different mechanisms of relaxation were found. The first one is a rapid magnetic relaxation driven by the domain reorientations and/or pinning and motion of domain walls. This mechanism is also responsible for the irreversible properties at low temperatures. The power-law decay of the magnetic moment confirms that this relaxation takes place in the system of weakly interacting ferromagnetic or superferromagnetic domains. The second mechanism is a longterm weak magnetic relaxation due to spin glass-phase.
A series of sigma-phase Fe_{100-x}V_x samples with 34.4 < x < 59.0 were investigated by neutron and X-ray diffraction and Mossbauer spectroscopy (MS) techniques. The first two methods were used for verification of the transformation from alpha to sig ma phase and they also permitted to determine lattice parameters of the unit cell. With MS the Debye temperature, T_D, was evaluated from the temperature dependence of the centre shift, <CS>, assuming its entire temperature dependence originates from the second-order Doppler shift. To our best knowledge, it is the first ever-reported study on T_D in sigma-FeV alloys. Both attice parameters i.e. a and c were revealed to linearly increase with x. T_D shows, however, a non-monotonic behaviour as a function of composition with its extreme values between 425K for x=40 and 600K for x=59. A local maximum of 525K was found to exist at x=43.
Using the angular dependence of the planar Hall effect in GaMnAs ferromagnetic films, we were able to determine the distribution of magnetic domain pinning fields in this material. Interestingly, there is a major difference between the pinning field distribution in as-grown and in annealed films, the former showing a strikingly narrower distribution than the latter. This conspicuous difference can be attributed to the degree of non-uniformity of magnetic anisotropy in both types of films. This finding provides a better understanding of the magnetic domain landscape in GaMnAs that has been the subject of intense debate.
83 - Delin Zhang , Jie Zhu , Tao Qu 2019
The interaction between strain and spin has received intensive attention in the scientific community due to its abundant physical phenomena and huge technological impact. Until now, there is no experimental report on ultra-high frequency magnetic res onance through the strain-spin coupling for any technologically relevant perpendicular magnetic material. Here we report the experimental detection of the acoustic strain waves that have a response time on the order of 10 picoseconds in perpendicular magnetic [Co/Pd]n multilayers via a femtosecond laser pulse excitation. Through direct measurements of acoustic strain waves, we observe an ultra-high frequency magnetic resonance up to 60 GHz in [Co/Pd]n multilayers. We further report a theoretical model of the strain-spin interaction. Our model reveals that the energy could be transferred efficiently from the strain to the spins and well explains the existence of a steady resonance state through exciting the spin system. The physical origins of the resonance between strain waves and magnetic precession and the requested conditions for obtaining magnetic resonance within thin magnetic films have also been discussed after thorough analysis. These combined results point out a potential pathway to enable an extremely high frequency (EHF) magnetic resonance through the strain-spin coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا