ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new observations of 34 YSO candidates in the SMC. The anchor of the analysis is a set of Spitzer-IRS spectra, supplemented by groundbased 3-5 micron spectra, Spitzer and NIR photometry, optical spectroscopy and radio data. The sources SEDs and spectral indices are consistent with embedded YSOs; prominent silicate absorption is observed in the spectra of at least ten sources, silicate emission is observed towards four sources. PAH emission is detected towards all but two sources. Based on band ratios (in particular the strength of the 11.3 micron and the weakness of the 8.6 micron bands) PAH emission towards SMC YSOs is dominated by predominantly small neutral grains. Ice absorption is observed towards fourteen sources in the SMC. The comparison of H2O and CO2 ice column densities for SMC, LMC and Galactic samples suggests that there is a significant H2O column density threshold for the detection of CO2 ice. This supports the scenario proposed by Oliveira et al. (2011), where the reduced shielding in metal-poor environments depletes the H2O column density in the outer regions of the YSO envelopes. No CO ice is detected towards the SMC sources. Emission due to pure-rotational 0-0 transitions of H2 is detected towards the majority of SMC sources, allowing us to estimate rotational temperatures and column densities. All but one source are spectroscopically confirmed as SMC YSOs. Of the 33 YSOs identified in the SMC, 30 sources populate different stages of massive stellar evolution. The remaining three sources are classified as intermediate-mass YSOs with a thick dusty disc and a tenuous envelope still present. We propose one of the sources is a D-type symbiotic system, based on the presence of Raman, H and He emission lines in the optical spectrum, and silicate emission in the IRS-spectrum. This would be the first dust-rich symbiotic system identified in the SMC. (abridged)
87 - J.M. Oliveira 2010
We present the comparison of the three most important ice constituents (water, CO and CO2) in the envelopes of massive Young Stellar Objects (YSOs), in environments of different metallicities: the Galaxy, the Large Magellanic Cloud (LMC) and, for the first time, the Small Magellanic Cloud (SMC). We present observations of water, CO and CO2 ice in 4 SMC and 3 LMC YSOs (obtained with Spitzer-IRS and VLT/ISAAC). While water and CO2 ice are detected in all Magellanic YSOs, CO ice is not detected in the SMC objects. Both CO and CO2 ice abundances are enhanced in the LMC when compared to high-luminosity Galactic YSOs. Based on the fact that both species appear to be enhanced in a consistent way, this effect is unlikely to be the result of enhanced CO2 production in hotter YSO envelopes as previously thought. Instead we propose that this results from a reduced water column density in the envelopes of LMC YSOs, a direct consequence of both the stronger UV radiation field and the reduced dust-to-gas ratio at lower metallicity. In the SMC the environmental conditions are harsher, and we observe a reduction in CO2 column density. Furthermore, the low gas-phase CO density and higher dust temperature in YSO envelopes in the SMC seem to inhibit CO freeze-out. The scenario we propose can be tested with further observations.
364 - J.M. Oliveira 2009
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program. We analyze the two prominent ice bands in the IRS spectral range: the bending mode of CO_2 ice at 15.2 micron and the ice band between 5 and 7 micron that includes contributions from the bending mode of water ice at 6 micron amongst other ice species. The 5-7 micron band is difficult to identify in our LMC sample due to the conspicuous presence of PAH emission superimposed onto the ice spectra. We identify water ice in the spectra of two sources; the spectrum of one of those sources also exhibits the 6.8 micron ice feature attributed to ammonium and methanol. We model the CO_2 band in detail, using the combination of laboratory ice profiles available in the literature. We find that a significant fraction (> 50%) of CO_2 ice is locked in a water-rich component, consistent with what is observed for Galactic sources. The majority of the sources in the LMC also require a pure-CO_2 contribution to the ice profile, evidence of thermal processing. There is a suggestion that CO_2 production might be enhanced in the LMC, but the size of the available sample precludes firmer conclusions. We place our results in the context of the star formation environment in the LMC.
67 - J.M.Oliveira 2008
The Magellanic Clouds offer unique opportunities to study star formation both on the global scales of an interacting system of gas-rich galaxies, as well as on the scales of individual star-forming clouds. The interstellar media of the Small and Larg e Magellanic Clouds and their connecting bridge, span a range in (low) metallicities and gas density. This allows us to study star formation near the critical density and gain an understanding of how tidal dwarfs might form; the low metallicity of the SMC in particular is typical of galaxies during the early phases of their assembly, and studies of star formation in the SMC provide a stepping stone to understand star formation at high redshift where these processes can not be directly observed. In this review, I introduce the different environments encountered in the Magellanic System and compare these with the Schmidt-Kennicutt law and the predicted efficiencies of various chemo-physical processes. I then concentrate on three aspects that are of particular importance: the chemistry of the embedded stages of star formation, the Initial Mass Function, and feedback effects from massive stars and its ability to trigger further star formation.
NGC 6611 is the massive young cluster (2-3 Myr) that ionises the Eagle Nebula. We present very deep photometric observations of the central region of NGC 6611 obtained with the Hubble Space Telescope and the following filters: ACS/WFC F775W and F850L P and NIC2 F110W and F160W, loosely equivalent to ground-based IZJH filters. This survey reaches down to I ~ 26 mag. We construct the Initial Mass Function (IMF) from ~ 1.5 Msun well into the brown dwarf regime (down to ~ 0.02 Msun). We have detected 30-35 brown dwarf candidates in this sample. The low-mass IMF is combined with a higher-mass IMF constructed from the groundbased catalogue from Oliveira et al. (2005). We compare the final IMF with those of well studied star forming regions: we find that the IMF of NGC 6611 more closely resembles that of the low-mass star forming region in Taurus than that of the more massive Orion Nebula Cluster (ONC). We conclude that there seems to be no severe environmental effect in the IMF due to the proximity of the massive stars in NGC 6611.
147 - Joana M. Oliveira 2008
M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks dramatically increased our understanding of the massive st ar feedback into the parent molecular cloud. A rich young stellar population (2 - 3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا