ترغب بنشر مسار تعليمي؟ اضغط هنا

107 - Haisheng Li , Qiang Mu 2015
In this paper, we study Heisenberg vertex algebras over fields of prime characteristic. The new feature is that the Heisenberg vertex algebras are no longer simple unlike in the case of characteristic zero. We then study a family of simple quotient v ertex algebras and we show that for each such simple quotient vertex algebra, irreducible modules are unique up to isomorphism and every module is completely reducible. To achieve our goal, we also establish a complete reducibility theorem for a certain category of modules over Heisenberg algebras.
We study $phi_epsilon$-coordinated modules for vertex algebras, where $phi_epsilon$ with $epsilon$ an integer parameter is a family of associates of the one-dimensional additive formal group. As the main results, we obtain a Jacobi type identity and a commutator formula for $phi_epsilon$-coordinated modules. We then use these results to study $phi_epsilon$-coordinated modules for vertex algebras associated to Novikov algebras by Primc.
153 - Cuipo Jiang , Haisheng Li 2013
We study a particular category ${cal{C}}$ of $gl_{infty}$-modules and a subcategory ${cal{C}}_{int}$ of integrable $gl_{infty}$-modules. As the main results, we classify the irreducible modules in these two categories and we show that every module in category ${cal{C}}_{int}$ is semi-simple. Furthermore, we determine the decomposition of the tensor products of irreducible modules in category ${cal{C}}_{int}$.
77 - Haisheng Li , Qiang Mu 2013
A theory of quasi modules at infinity for (weak) quantum vertex algebras including vertex algebras was previously developed in cite{li-infinity}. In this current paper, quasi modules at infinity for vertex algebras are revisited. Among the main resul ts, we extend some technical results, to fill in a gap in the proof of a theorem therein, and we obtain a commutator formula for general quasi modules at infinity and establish a version of the converse of the aforementioned theorem.
153 - Cuipo Jiang , Haisheng Li 2013
In this paper, we present a canonical association of quantum vertex algebras and their $phi$-coordinated modules to Lie algebra $gl_{infty}$ and its 1-dimensional central extension. To this end we construct and make use of another closely related infinite-dimensional Lie algebra.
In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra without vacuum which is universal to the forgetful functor. Furthermore, from any Leibniz algebra $g$ we construct a vertex Leibniz algebra $V_{g}$ and show that $V_{g}$ can be embedded into a vertex algebra if and only if $g$ is a Lie algebra.
We develop a theory of toroidal vertex algebras and their modules, and we give a conceptual construction of toroidal vertex algebras and their modules. As an application, we associate toroidal vertex algebras and their modules to toroidal Lie algebras.
84 - Haisheng Li , Shaobin Tan , 2008
We study twisted modules for (weak) quantum vertex algebras and we give a conceptual construction of (weak) quantum vertex algebras and their twisted modules. As an application we construct and classify irreducible twisted modules for a certain family of quantum vertex algebras.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا