ترغب بنشر مسار تعليمي؟ اضغط هنا

On quasi modules at infinity for vertex algebras

127   0   0.0 ( 0 )
 نشر من قبل Haisheng Li Dr.
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A theory of quasi modules at infinity for (weak) quantum vertex algebras including vertex algebras was previously developed in cite{li-infinity}. In this current paper, quasi modules at infinity for vertex algebras are revisited. Among the main results, we extend some technical results, to fill in a gap in the proof of a theorem therein, and we obtain a commutator formula for general quasi modules at infinity and establish a version of the converse of the aforementioned theorem.



قيم البحث

اقرأ أيضاً

139 - Fulin Chen , Shaobin Tan , Nina Yu 2021
For any nullity $2$ extended affine Lie algebra $mathcal{E}$ of maximal type and $ellinmathbb{C}$, we prove that there exist a vertex algebra $V_{mathcal{E}}(ell)$ and an automorphism group $G$ of $V_{mathcal{E}}(ell)$ equipped with a linear characte r $chi$, such that the category of restricted $mathcal{E}$-modules of level $ell$ is canonically isomorphic to the category of $(G,chi)$-equivariant $phi$-coordinated quasi $V_{mathcal{E}}(ell)$-modules. Moreover, when $ell$ is a nonnegative integer, there is a quotient vertex algebra $L_{mathcal{E}}(ell)$ of $V_{mathcal{E}}(ell)$ modulo by a $G$-stable ideal, and we prove that the integrable restricted $mathcal{E}$-modules of level $ell$ are exactly the $(G,chi)$-equivariant $phi$-coordinated quasi $L_{mathcal{E}}(ell)$-modules.
143 - Haisheng Li , Shaobin Tan , 2008
We study twisted modules for (weak) quantum vertex algebras and we give a conceptual construction of (weak) quantum vertex algebras and their twisted modules. As an application we construct and classify irreducible twisted modules for a certain family of quantum vertex algebras.
We study $phi_epsilon$-coordinated modules for vertex algebras, where $phi_epsilon$ with $epsilon$ an integer parameter is a family of associates of the one-dimensional additive formal group. As the main results, we obtain a Jacobi type identity and a commutator formula for $phi_epsilon$-coordinated modules. We then use these results to study $phi_epsilon$-coordinated modules for vertex algebras associated to Novikov algebras by Primc.
This is a paper in a series systematically to study toroidal vertex algebras. Previously, a theory of toroidal vertex algebras and modules was developed and toroidal vertex algebras were explicitly associated to toroidal Lie algebras. In this paper, we study twisted modules for toroidal vertex algebras. More specifically, we introduce a notion of twisted module for a general toroidal vertex algebra with a finite order automorphism and we give a general construction of toroidal vertex algebras and twisted modules. We then use this construction to establish a natural association of toroidal vertex algebras and twisted modules to twisted toroidal Lie algebras. This together with some other known results implies that almost all extended affine Lie algebras can be associated to toroidal vertex algebras.
167 - Haisheng Li 2016
This paper is about $phi$-coordinated modules for weak quantum vertex algebras. Among the main results, several canonical connections among $phi$-coordinated modules for different $phi$ are established. For vertex operator algebras, a reinterpretatio n of Frenkel-Huang-Lepowskys theorem on contragredient module is given in terms of $phi$-coordinated modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا