ترغب بنشر مسار تعليمي؟ اضغط هنا

Toroidal vertex algebras and their modules

254   0   0.0 ( 0 )
 نشر من قبل Haisheng Li Dr.
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theory of toroidal vertex algebras and their modules, and we give a conceptual construction of toroidal vertex algebras and their modules. As an application, we associate toroidal vertex algebras and their modules to toroidal Lie algebras.



قيم البحث

اقرأ أيضاً

In this paper, we continue the study on toroidal vertex algebras initiated in cite{LTW}, to study concrete toroidal vertex algebras associated to toroidal Lie algebra $L_{r}(hat{frak{g}})=hat{frak{g}}otimes L_r$, where $hat{frak{g}}$ is an untwisted affine Lie algebra and $L_r=$mathbb{C}[t_{1}^{pm 1},ldots,t_{r}^{pm 1}]$. We first construct an $(r+1)$-toroidal vertex algebra $V(T,0)$ and show that the category of restricted $L_{r}(hat{frak{g}})$-modules is canonically isomorphic to that of $V(T,0)$-modules.Let $c$ denote the standard central element of $hat{frak{g}}$ and set $S_c=U(L_r(mathbb{C}c))$. We furthermore study a distinguished subalgebra of $V(T,0)$, denoted by $V(S_c,0)$. We show that (graded) simple quotient toroidal vertex algebras of $V(S_c,0)$ are parametrized by a $mathbb{Z}^r$-graded ring homomorphism $psi:S_crightarrow L_r$ such that Im$psi$ is a $mathbb{Z}^r$-graded simple $S_c$-module. Denote by $L(psi,0}$ the simple $(r+1)$-toroidal vertex algebra of $V(S_c,0)$ associated to $psi$. We determine for which $psi$, $L(psi,0)$ is an integrable $L_{r}(hat{frak{g}})$-module and we then classify irreducible $L(psi,0)$-modules for such a $psi$. For our need, we also obtain various general results.
This is a paper in a series systematically to study toroidal vertex algebras. Previously, a theory of toroidal vertex algebras and modules was developed and toroidal vertex algebras were explicitly associated to toroidal Lie algebras. In this paper, we study twisted modules for toroidal vertex algebras. More specifically, we introduce a notion of twisted module for a general toroidal vertex algebra with a finite order automorphism and we give a general construction of toroidal vertex algebras and twisted modules. We then use this construction to establish a natural association of toroidal vertex algebras and twisted modules to twisted toroidal Lie algebras. This together with some other known results implies that almost all extended affine Lie algebras can be associated to toroidal vertex algebras.
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their $phi$-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vert ex algebras to the variant Lie algebras, and establish a canonical connection between modules for toroidal extended affine Lie algebras and $phi$-coordinated modules for these vertex algebras. Furthermore, by employing some results of Billig, we obtain an explicit realization of irreducible modules for the variant Lie algebras.
213 - Hongyan Guo 2021
In this paper, we explore a canonical connection between the algebra of $q$-difference operators $widetilde{V}_{q}$, affine Lie algebra and affine vertex algebras associated to certain subalgebra $mathcal{A}$ of the Lie algebra $mathfrak{gl}_{infty}$ . We also introduce and study a category $mathcal{O}$ of $widetilde{V}_{q}$-modules. More precisely, we obtain a realization of $widetilde{V}_{q}$ as a covariant algebra of the affine Lie algebra $widehat{mathcal{A}^{*}}$, where $mathcal{A}^{*}$ is a 1-dimensional central extension of $mathcal{A}$. We prove that restricted $widetilde{V_{q}}$-modules of level $ell_{12}$ correspond to $mathbb{Z}$-equivariant $phi$-coordinated quasi-modules for the vertex algebra $V_{widetilde{mathcal{A}}}(ell_{12},0)$, where $widetilde{mathcal{A}}$ is a generalized affine Lie algebra of $mathcal{A}$. In the end, we show that objects in the category $mathcal{O}$ are restricted $widetilde{V_{q}}$-modules, and we classify simple modules in the category $mathcal{O}$.
148 - Haisheng Li , Shaobin Tan , 2008
We study twisted modules for (weak) quantum vertex algebras and we give a conceptual construction of (weak) quantum vertex algebras and their twisted modules. As an application we construct and classify irreducible twisted modules for a certain family of quantum vertex algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا