ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb interactions have a major role in one-dimensional electronic transport. They modify the nature of the elementary excitations from Landau quasiparticles in higher dimensions to collective excitations in one dimension. Here we report the direct observation of the collective neutral and charge modes of the two chiral co-propagating edge channels of opposite spins of the quantum Hall effect at filling factor 2. Generating a charge density wave at frequency f in the outer channel, we measure the current induced by inter-channel Coulomb interaction in the inner channel after a 3-mm propagation length. Varying the driving frequency from 0.7 to 11 GHz, we observe damped oscillations in the induced current that result from the phase shift between the fast charge and slow neutral eigenmodes. We measure the dispersion relation and dissipation of the neutral mode from which we deduce quantitative information on the interaction range and parameters.
We have realized a quantum optics like Hanbury Brown and Twiss (HBT) experiment by partitioning, on an electronic beam-splitter, single elementary electronic excitations produced one by one by an on-demand emitter. We show that the measurement of the output currents correlations in the HBT geometry provides a direct counting, at the single charge level, of the elementary excitations (electron/hole pairs) generated by the emitter at each cycle. We observe the antibunching of low energy excitations emitted by the source with thermal excitations of the Fermi sea already present in the input leads of the splitter, which suppresses their contribution to the partition noise. This effect is used to probe the energy distribution of the emitted wave-packets.
The controlled and accurate emission of coherent electronic wave packets is of prime importance for future applications of nano-scale electronics. Here we present a theoretical and experimental analysis of the finite-frequency noise spectrum of a per iodically driven single electron emitter. The electron source consists of a mesoscopic capacitor that emits single electrons and holes into a chiral edge state of a quantum Hall sample. We compare experimental results with two complementary theoretical descriptions: On one hand, the Floquet scattering theory which leads to accurate numerical results for the noise spectrum under all relevant operating conditions. On the other hand, a semi-classical model which enables us to develop an analytic description of the main sources of noise when the emitter is operated under optimal conditions. We find excellent agreement between experiment and theory. Importantly, the noise spectrum provides us with an accurate description and characterization of the mesoscopic capacitor when operated as a periodic single electron emitter.
We consider a model of a detector of ballistic electrons at the edge of a two-dimensional electron gas in the integer quantum Hall regime. The electron is detected by capacitive coupling to a gate which is also coupled to a passive RC circuit. Using a quantum description of this circuit, we determine the signal over noise ratio of the detector in term of the detector characteristics. The back-action of the detector on the incident wavepacket is then computed using a Feynman-Vernon influence functional approach. Using information theory, we define the appropriate notion of quantum limit for such an on the fly detector. We show that our particular detector can approach the quantum limit up to logarithms in the ratio of the measurement time over the RC relaxation time. We argue that such a weak logarithmic effect is of no practical significance. Finally we show that a two-electron interference experiment can be used to probe the detector induced decoherence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا