ترغب بنشر مسار تعليمي؟ اضغط هنا

Current noise spectrum of a single particle emitter: theory and experiment

50   0   0.0 ( 0 )
 نشر من قبل Gwendal F\\`eve
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The controlled and accurate emission of coherent electronic wave packets is of prime importance for future applications of nano-scale electronics. Here we present a theoretical and experimental analysis of the finite-frequency noise spectrum of a periodically driven single electron emitter. The electron source consists of a mesoscopic capacitor that emits single electrons and holes into a chiral edge state of a quantum Hall sample. We compare experimental results with two complementary theoretical descriptions: On one hand, the Floquet scattering theory which leads to accurate numerical results for the noise spectrum under all relevant operating conditions. On the other hand, a semi-classical model which enables us to develop an analytic description of the main sources of noise when the emitter is operated under optimal conditions. We find excellent agreement between experiment and theory. Importantly, the noise spectrum provides us with an accurate description and characterization of the mesoscopic capacitor when operated as a periodic single electron emitter.

قيم البحث

اقرأ أيضاً

We consider the non-equilibrium zero frequency noise generated by a temperature gradient applied on a device composed of two normal leads separated by a quantum dot. We recall the derivation of the scattering theory for non-equilibrium noise for a ge neral situation where both a bias voltage and a temperature gradient can coexist and put it in a historical perspective. We provide a microscopic derivation of zero frequency noise through a quantum dot based on a tight binding Hamiltonian, which constitutes a generalization of the pioneering work of Caroli et al. for the current obtained in the context of the Keldysh formalism. For a single level quantum dot, the obtained transmission coefficient entering the scattering formula for the non-equilibrium noise corresponds to a Breit-Wigner resonance. We compute the delta-$T$ noise as a function of the dot level position, and of the dot level width, in the Breit-Wigner case, for two relevant situations which were considered recently in two separate experiments. In the regime where the two reservoir temperatures are comparable, our gradient expansion shows that the delta-$T$ noise is dominated by its quadratic contribution, and is minimal close to resonance. In the opposite regime where one reservoir is much colder, the gradient expansion fails and we find the noise to be typically linear in temperature before saturating. In both situations, we conclude with a short discussion of the case where both a voltage bias and a temperature gradient are present, in order to address the potential competition with thermoelectric effects.
We analyze the equilibrium and non-equilibrium frequency-dependent spin current noise and spin conductance through a quantum dot in the local moment regime. Spin current correlations are shown to behave markedly differently from charge correlations: Equilibrium spin cross-correlations are suppressed at frequencies below the Kondo scale, and are characterized by a universal function that we determine numerically for zero temperature. For asymmetrical quantum dots dynamical spin accumulation resonance is found for frequencies of the order of the Kondo energy. At higher temperatures surprising low-frequency anomalies related to overall spin conservation appear.
Quantum dots (QDs) can serve as near perfect energy filters and are therefore of significant interest for the study of thermoelectric energy conversion close to thermodynamic efficiency limits. Indeed, recent experiments in [Nat. Nano. 13, 920 (2018) ] realized a QD heat engine with performance near these limits and in excellent agreement with theoretical predictions. However, these experiments also highlighted a need for more theory to help guide and understand the practical optimization of QD heat engines, in particular regarding the role of tunnel couplings on the performance at maximum power and efficiency for QDs that couple seemingly weakly to electronic reservoirs. Furthermore, these experiments also highlighted the critical role of the external load when optimizing the performance of a QD heat engine in practice. To provide further insight into the operation of these engines we use the Anderson impurity model together with a Master equation approach to perform power and efficiency calculations up to co-tunneling order. This is combined with additional thermoelectric experiments on a QD embedded in a nanowire where the power is measured using two methods. We use the measurements to present an experimental procedure for efficiently finding the external load $R_P$ which should be connected to the engine to optimize power output. Our theoretical estimates of $R_P$ show a good agreement with the experimental results, and we show that second order tunneling processes and non-linear effects have little impact close to maximum power, allowing us to derive a simple analytic expression for $R_P$. In contrast, we find that the electron contribution to the thermoelectric efficiency is significantly reduced by second order tunneling processes, even for rather weak tunnel couplings.
We construct an optimal set of single-particle states for few-electron quantum dots (QDs) using the method of natural orbitals (NOs). The NOs include also the effects of the Coulomb repulsion between electrons. We find that they agree well with the n oniteracting orbitals for GaAs QDs of realistic parameters, while the Coulomb interactions only rescale the radius of the NOs compared to the noninteracting case. We use NOs to show that four-electron QDs are less susceptible to charge noise than their two-electron counterparts.
The influence of multiple vibrational modes on current fluctuations in electron transport through single-molecule junctions is investigated. Our analysis is based on a generic model of a molecular junction, which comprises a single electronic state o n the molecular bridge coupled to multiple vibrational modes and fermionic leads, and employs a master equation approach. The results reveal that in molecular junctions with multiple vibrational modes already weak to moderate electronic-vibrational coupling may result in high noise levels, especially at the onset of resonant transport, in accordance with experimental findings of Secker et al..[1] The underlying mechanisms are analyzed in some detail. [1] D. Secker et al., Phys. Rev. Lett. 106, 136807 (2011).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا