ترغب بنشر مسار تعليمي؟ اضغط هنا

54 - T. Tabuchi , Z. Li , G.F. Chen 2010
We report systematic ^{75}As-NQR and ^{139}La-NMR studies on nickel-pnictide superconductors LaNiAsO_{1-x}F_x (x=0, 0.06, 0.10 and 0.12). The spin lattice relaxation rate 1/T_1 decreases below T_c with a well-defined coherence peak and follows an exp onential decay at low temperatures. This result indicates that the superconducting gap is fully opened, and is strikingly different from that observed in iron-pnictide analogs. In the normal state, 1/T_1T is constant in the temperature range T_c sim 4 K < T <10 K for all compounds and up to T=250 K for x=0 and 0.06, which indicates weak electron correlations and is also different from the iron analog. We argue that the differences between the iron and nickel pnictides arise from the different electronic band structure. Our results highlight the importance of the peculiar Fermi-surface topology in iron-pnictides.
364 - K. Tahara , Z. Li , H.X. Yang 2009
We report ^{11}B NMR measurements in non-centrosymmetric superconductors Mg_{9.3}Ir_{19}B_{16.7} (T_c=5.8 K) and Mg_{10.5}Ir_{19}B_{17.1} (T_c=4.8 K). The spin lattice relaxation rate and the Knight shift indicate that the Cooper pairs are predominan tly in the spin-singlet state with an isotropic gap. However, Mg_{10.5}Ir_{19}B_{17.1} is found to have more defects and the spin susceptibility remains finite even in the zero-temperature limit. We interpret this result as that the defects enhance the spin-orbit coupling and bring about more spin-triplet component.
335 - K. Matano , G.L. Sun , D.L. Sun 2009
We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to unde rdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO$_{1-x}$F$_{x}$. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity.
100 - K. Matano , Z.A. Ren , X.L. Dong 2008
Since the discovery of high transition-temperature (Tc) superconductivity in copper oxides two decades ago, continuous efforts have been devoted to searching for similar phenomenon in other compounds. With the exception of MgB2 (Tc =39 K), however, T c is generally far lower than desired. Recently, breakthrough has been made in a new class of oxypnictide compounds. Following the initial discovery of superconductivity in LaO1-x FxFeAs (Tc =26 K), Tc onset has been raised to 55 K in ReO1-xFxFeAs (Re: Ce, Pr, Nd, Sm). Meanwhile, unravelling the nature of the energy associated with the formation of current-carrying pairs (Cooper pairs), referred to as the superconducting energy gap, is the first and vital step towards understanding why the superconductivity occurs at such high temperature and is also important for finding superconductors with still higher Tc. Here we show that, on the basis of the nuclear magnetic resonance (NMR) measurements in PrO0.89F0.11FeAs (Tc =45 K), the Cooper pair is in the spin-singlet state (two spins are anti-paralleled), with two energy gaps opening below Tc. The results strongly suggest the existence of nodes (zeros) in the gap. None of superconductors known to date has such unique gap features, although copper-oxides and MgB2 share part of them.
We report T_c and ^{59}Co nuclear quadrupole resonance (NQR) measurements on the cobalt oxide superconductor Na_{x}CoO_{2}cdot 1.3H_{2}O (T_c=4.8 K) under hydrostatic pressure (P) up to 2.36 GPa. T_c decreases with increasing pressure at an average r ate of -0.49pm0.09 K/GPa. At low pressures Pleq0.49 GPa, the decrease of T_c is accompanied by a weakening of the spin correlations at a finite wave vector and a reduction of the density of states (DOS) at the Fermi level. At high pressures above 1.93 GPa, however, the decrease of T_c is mainly due to a reduction of the DOS. These results indicate that the electronic/magnetic state of Co is primarily responsible for the superconductivity. The spin-lattice relaxation rate 1/T_1 at P=0.49 GPa shows a T^3 variation below T_c down to Tsim 0.12T_c, which provides compelling evidence for the presence of line nodes in the superconducting gap function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا