ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - G. Y. Guo , Q. Niu , N. Nagaosa 2014
We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in proximity-induced ferromagnetic palladium and platinum which is widely used in spintronics, within the Berry phase formalism based on the relativistic band structure calcul ations. We find that both the anomalous Hall ($sigma_{xy}^A$) and Nernst ($alpha_{xy}^A$) conductivities can be related to the spin Hall conductivity ($sigma_{xy}^S$) and band exchange-splitting ($Delta_{ex}$) by relations $sigma_{xy}^A =Delta_{ex}frac{e}{hbar}sigma_{xy}^S(E_F)$ and $alpha_{xy}^A = -frac{pi^2}{3}frac{k_B^2TDelta_{ex}}{hbar}sigma_{xy}^s(mu)$, respectively. In particular, these relations would predict that the $sigma_{xy}^A$ in the magnetized Pt (Pd) would be positive (negative) since the $sigma_{xy}^S(E_F)$ is positive (negative). Furthermore, both $sigma_{xy}^A$ and $alpha_{xy}^A$ are approximately proportional to the induced spin magnetic moment ($m_s$) because the $Delta_{ex}$ is a linear function of $m_s$. Using the reported $m_s$ in the magnetized Pt and Pd, we predict that the intrinsic anomalous Nernst conductivity (ANC) in the magnetic platinum and palladium would be gigantic, being up to ten times larger than, e.g., iron, while the intrinsic anomalous Hall conductivity (AHC) would also be significant.
The plasmonic properties of sphere-like bcc Na nanoclusters ranging from Na$_{15}$ to Na$_{331}$ have been studied by real-time time-dependent local density approximation calculations. The optical absorption spectrum, density response function and st atic polarizability are evaluated. It is shown that the effect of the ionic background (ionic species and lattice) of the clusters accounts for the remaining discrepancy in the principal (surface plasmon) absorption peak energy between the experiments and previous calculations based on a jellium background model. The ionic background effect also pushes the critical cluster size where the maximum width of the principal peak occurs from Na$_{40}$ predicted by the previous jellium model calculations to Na$_{65}$. In the volume mode clusters (Na$_{27}$, Na$_{51}$, Na$_{65}$, Na$_{89}$ and Na$_{113}$) in which the density response function is dominated by an intense volume mode, a multiple absorption peak structure also appears next to the principal peak. In contrast, the surface mode clusters of greater size (Na$_{169}$, Na$_{229}$, Na$_{283}$ and Na$_{331}$) exhibit a smoother and narrower principal absorption peak because their surface plasmon energy is located well within that of the unperturbed electron-hole transitions, and their density responses already bear resemblance to that of classical Mie theory. Moreover, it is found that the volume plasmon that exist only in finite size particles, gives rise to the long absorption tail in the UV region. This volume plasmon manifests itself in the absorption spectrum even for clusters as large as Na$_{331}$ with an effective diameter of $sim$3.0 nm.
Recent ab intio studies of the magnetic properties of all 3d transition metal(TM) freestanding atomic chains predicted that these nanowires could have a giant magnetic anisotropy energy (MAE) and might support a spin-spiral structure, thereby suggest ing that these nanowires would have technological applicationsin, e.g., high density magnetic data storages. In order to investigate how the substrates may affect the magnetic properties of the nanowires, here we systematically study the V, Cr and Mn linear atomic chains on the Cu(001) surface based on the density functional theory with the generalized gradient approximation. We find that V, Cr, and Mn linear chains on the Cu(001) surface still have a stable or metastable ferromagnetic state. However, the ferromagnetic state is unstable against formation of a noncollinear spin-spiral structure in the Mn linear chains and also the V linear chain on the atop sites on the Cu(001) surface, due to the frustrated magnetic interactions in these systems. Nonetheless, the presence of the Cu(001) substrate does destabilize the spin-spiral state already present in the freestanding V linear chain and stabilizes the ferromagnetic state in the V linear chain on the hollow sites on Cu(001). When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3d TM chains. Furthermore, both the orbital magnetic moments and MAEs for the V, Cr and Mn are small, in comparison with both the corresponding freestanding nanowires and also the Fe, Co and Ni linear chains on the Cu (001) surface.
73 - J. C. Tung , G. Y. Guo 2011
Magnetism at the nanoscale has been a very active research area in the past decades, because of its novel fundamental physics and exciting potential applications. We have recently performed an {it ab intio} study of the structural, electronic and mag netic properties of all 3$d$ transition metal (TM) freestanding atomic chains and found that Fe and Ni nanowires have a giant magnetic anisotropy energy (MAE), indicating that these nanowires would have applications in high density magnetic data storages. In this paper, we perform density functional calculations for the Fe, Co and Ni linear atomic chains on Cu(001) surface within the generalized gradient approximation, in order to investigate how the substrates would affect the magnetic properties of the nanowires. We find that Fe, Co and Ni linear chains on Cu(001) surface still have a stable or metastable ferromagnetic state. When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3$d$ TM chains, whilst significant orbital magnetic moments appear and also are direction-dependent. Finally, we find that the MAE for Fe, and Co remains large, i.e., being not much affected by the presence of Cu substrate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا