ترغب بنشر مسار تعليمي؟ اضغط هنا

The failure of the laser-interferometer gravitational wave antennas to measure the tiny changes of lengths many orders of magnitude smaller than the diameter of a proton raises the question of whether the reason for this failure is a large gravitatio nal wave background noise, and if so, where this background noise is coming from. It is conjectured that it comes from gravitational waves emitted from a magnetohydrodynamic dynamo in the center of the sun, with the large magnetic field from this dynamo shielded by thermomagnetic currents in the tachocline. Using the moon as a large Weber bar, these gravitational waves could possibly be detected by the Poisson diffraction into the center of the lunar shadow during a total solar eclipse.
A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place i n the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus.
It is shown that in contrast to the electric pulse power driven implosion of a single conical wire array, the implosion of a nested conical wire array with opposite alternate opening angles can lead to the generation of fast jets, with velocities of the order 108 cm/s. This technique can be applied for the supersonic shear flow stabilization of a dense z-pinch, but possibly also for the fast ignition of a pre-compressed dense deuterium-tritium target.
61 - F.Winterberg 2009
An attempt is made to explain the recently reported occurrence of ultradense deuterium as an isothermal transition of Rydberg matter into a high density phase by quantum mechanical exchange forces. It is conjectured that the transition is made possib le by the formation of vortices in a Cooper pair electron fluid, separating the electrons from the deuterons, with the deuterons undergoing Bose-Einstein condensation in the core of the vortices. If such a state of deuterium should exist at the reported density of about 100,000 g/cm3, it would greatly facility the ignition of a thermonuclear detonation wave in pure deuterium, by placing the deuterium in a thin disc, to be ignited by a pulsed ultrafast laser or particle beam of modest energy.
115 - F. Winterberg 2009
Different ways to achieve the stabilization of a linear z-pinch by a superimposed shear flow are analyzed. They are: 1) Axial shear flow proposed by Arber and Howell with the pinch discharge in its center, and experimentally tested by Shumlak et al. 2) Spiral flow of a dense low temperature plasma surrounding a dense pinch discharge. 3) A thin metallic projectile shot at a high velocity through the center of the pinch discharge. 4) The replacement of the high velocity projectile by the shape charge effect jet in a conical implosion. 5) The replacement of the jet by a stationary wire inside the conical implosion.
53 - F.Winterberg 2009
To reach the flyer plate velocities in excess of 1000km/sec required for impact ignition, it is proposed to combine the ablation acceleration of a dense hydrogen jet by its isentropic compression in a convergent Prandtl-Meyer flow, magnetically insul ated by the Nernst effect against the wall confining the flow to reduce friction losses. A flyer plate placed at the front of the flow can there be accelerated to much higher velocities.
79 - F.Winterberg 2009
The previous study regarding the stabilization of a magnetized constant temperature plasma by shear flow with vorticity is extended to a plasma of non-constant temperature, where in the presence of heat source or sinks the thermomagnetic Nernst effec t becomes important. Of special interest is what this effect has on the stabilization of a linear z-pinch discharge for which exact solutions are given. Solutions which are unstable for subsonic shear flow become stable if the flow is supersonic.
Exact solutions of a magnetized plasma in a vorticity containing shear flow for constant temperature are presented. This is followed by the modification of these solutions by thermomagnetic currents in the presence of temperature gradients. It is sho wn that solutions which are unstable for a subsonic flow, are stable if the flow is supersonic. The results are applied to the problem of vorticity shear flow stabilization of a linear z-pinch discharge.
It is proposed to treat cancer by the combination of a strong magnetic field with intense ultrasound. At the low electrical conductivity of tissue the magnetic field is not frozen into the tissue, and oscillates against the tissue which is brought in to rapid oscillation by the ultrasound. As a result, a rapidly oscillating electric field is induced in the tissue, strong enough to disrupt cancer cell replication. Unlike radio frequency waves, which have been proposed for this purpose, ultrasound can be easily focused onto the regions to be treated. This method has the potential for the complete eradication of the tumor.
Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite well possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion, can there be refueled. To obtain a high thrust with a high specific impulse, favors the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of propulsion system in space would be very high, but it can also be developed on earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, rather than deuterium-tritium with a laser where 80% of the energy goes into neutrons, would also mean a breakthrough in fusion research, and therefore would justify the large development costs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا