ترغب بنشر مسار تعليمي؟ اضغط هنا

The apodizing phase plate (APP) is a solid-state pupil optic that clears out a D-shaped area next to the core of the ensuing PSF. To make the APP more efficient for high-contrast imaging, its bandwidth should be as large as possible, and the location of the D-shaped area should be easily swapped to the other side of the PSF. We present the design of a broadband APP that yields two PSFs that have the opposite sides cleared out. Both properties are enabled by a half-wave liquid crystal layer, for which the local fast axis orientation over the pupil is forced to follow the required phase structure. For each of the two circular polarization states, the required phase apodization is thus obtained, and, moreover, the PSFs after a quarter-wave plate and a polarizing beam-splitter are complementary due to the antisymmetric nature of the phase apodization. The device can be achromatized in the same way as half-wave plates of the Pancharatnam type or by layering self-aligning twisted liquid crystals to form a monolithic film called a multi-twist retarder. As the VAPP introduces a known phase diversity between the two PSFs, they may be used directly for wavefront sensing. By applying an additional quarter-wave plate in front, the device also acts as a regular polarizing beam-splitter, which therefore furnishes high-contrast polarimetric imaging. If the PSF core is not saturated, the polarimetric dual-beam correction can also be applied to polarized circumstellar structure. The prototype results show the viability of the vector-APP concept.
X-shooter is one of the most popular instruments at the VLT, offering instantaneous spectroscopy from 300 to 2500 nm. We present the design of a single polarimetric unit at the polarization-free Cassegrain focus that serves all three spectrograph arm s of X-shooter. It consists of a calcite Savart plate as a polarizing beam-splitter and a rotatable crystal retarder stack as a polychromatic modulator. Since even superachromatic wave plates have a wavelength range that is too limited for X-shooter, this novel modulator is designed to offer close-to-optimal polarimetric efficiencies for all Stokes parameters at all wavelengths. We analyze the modulator design in terms of its polarimetric performance, its temperature sensitivity, and its polarized fringes. Furthermore, we present the optical design of the polarimetric unit. The X-shooter polarimeter will furnish a myriad of science cases: from measuring stellar magnetic fields (e.g., Ap stars, white dwarfs, massive stars) to determining asymmetric structures around young stars and in supernova explosions.
We recently commissioned the polarimetric upgrade of the HARPS spectrograph at ESOs 3.6-m telescope at La Silla, Chile. The HARPS polarimeter is capable of full Stokes spectropolarimetry with large sensitivity and accuracy, taking advantage of the la rge spectral resolution and stability of HARPS. In this paper we present the instrument design and its polarimetric performance. The first HARPSpol observations show that it can attain a polarimetric sensitivity of ~10^-5 (after addition of many lines) and that no significant instrumental polarization effects are present.
The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can in principle be used as a diagnostic for these fields. However, the prediction that the majority of the weak, turbulent field resides in intergranular lanes also poses significant challenges to scattering polarization observations because high spatial resolution is usually difficult to attain. We aim to measure the difference in scattering polarization between granules and intergranules. We present the respective center-to-limb variations, which may serve as input for future models. We perform full Stokes filter polarimetry at different solar limb positions with the CN band filter of the Hinode-SOT Broadband Filter Imager, which represents the first scattering polarization observations with sufficient spatial resolution to discern the granulation. Hinode-SOT offers unprecedented spatial resolution in combination with high polarimetric sensitivity. The CN band is known to have a significant scattering polarization signal, and is sensitive to the Hanle effect. We extend the instrumental polarization calibration routine to the observing wavelength, and correct for various systematic effects. The scattering polarization for granules (i.e., regions brighter than the median intensity of non-magnetic pixels) is significantly larger than for intergranules. We derive that the intergranules (i.e., the remaining non-magnetic pixels) exhibit (9.8 pm 3.0)% less scattering polarization for 0.2<u<0.3, although systematic effects cannot be completely excluded. These observations constrain MHD models in combination with (polarized) radiative transfer in terms of CN band line formation, radiation anisotropy, and magnetic fields.
88 - G. van Harten , F. Snik , 2009
In polarimetry it is important to characterize the polarization properties of the instrument itself to disentangle real astrophysical signals from instrumental effects. This article deals with the accurate measurement and modeling of the polarization properties of real aluminum mirrors, as used in astronomical telescopes. Main goals are the characterization of the aluminum oxide layer thickness at different times after evaporation and its influence on the polarization properties of the mirror. The full polarization properties of an aluminum mirror are measured with Mueller matrix ellipsometry at different incidence angles and wavelengths. The best fit of theoretical Mueller matrices to all measurements simultaneously is obtained by taking into account a model of bulk aluminum with a thin aluminum oxide film on top of it. Full Mueller matrix measurements of a mirror are obtained with an absolute accuracy of ~1% after calibration. The determined layer thicknesses indicate logarithmic growth in the first few hours after evaporation, but it remains stable at a value of 4.12+/-0.08 nm on the long term. Although the aluminum oxide layer is established to be thin, it is necessary to consider it to accurately describe the mirrors polarization properties.
195 - Frans Snik , Theodora Karalidi , 2009
Linear (spectro) polarimetry is usually performed using separate photon flux measurements after spatial or temporal polarization modulation. Such classical polarimeters are limited in sensitivity and accuracy by systematic effects and noise. We descr ibe a spectral modulation principle that is based on encoding the full linear polarization properties of light in its spectrum. Such spectral modulation is obtained with an optical train of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizer. The emergent spectral modulation is sinusoidal with its amplitude scaling with the degree of linear polarization and its phase scaling with the angle of linear polarization. The large advantage of this passive setup is that all polarization information is, in principle, contained in a single spectral measurement, thereby eliminating all differential effects that potentially create spurious polarization signals. Since the polarization properties are obtained through curve fitting, the susceptibility to noise is relatively low. We provide general design options for a spectral modulator and describe the design of a prototype modulator. Currently, the setup in combination with a dedicated retrieval algorithm can be used to measure linear polarization signals with a relative accuracy of 5%.
200 - Frans Snik 2009
Many objects on the sky exhibit a centrosymmetric polarization pattern, particularly in cases involving single scattering around a central source. Utilizing a novel liquid crystal device (the ``theta cell) that transforms the coordinate system of lin ear polarization in an image plane from Cartesian to polar, the observation of centrosymmetric polarization patterns can be improved: instead of measuring Stokes Q and U on the sky, one only needs to measure Stokes Q in the new instrument coordinate system. This reduces the effective exposure time by a factor of two and simplifies the polarization modulator design. According to the manufacturers specifications and to measurements in the lab, the liquid crystal device can be applied in the visible and NIR wavelength range. Astronomical science cases for a``radial polarimeter include exoplanet detection, imaging of circumstellar disks, reflection nebulae and light echos, characterization of planetary atmospheres and diagnostics of the solar K-corona. The first astronomical instrument that utilizes a theta cell for radial polarimetry is the S5T (Small Synoptic Second Solar Spectrum Telescope), which accurately measures scattering polarization signals near the limb of the sun. These observations are crucial for understanding the nature and origin of weak, turbulent magnetic fields in the solar photosphere and elsewhere in the universe. A ``radial polarimeter observing a slightly defocused point source performs one-shot full linear polarimetry. With a theta cell in a pupil plane, a beams linear polarization properties (e.g. for calibration purposes) can be fully controlled through pupil masking.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا