ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral modulation for full linear polarimetry

240   0   0.0 ( 0 )
 نشر من قبل Frans Snik
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear (spectro) polarimetry is usually performed using separate photon flux measurements after spatial or temporal polarization modulation. Such classical polarimeters are limited in sensitivity and accuracy by systematic effects and noise. We describe a spectral modulation principle that is based on encoding the full linear polarization properties of light in its spectrum. Such spectral modulation is obtained with an optical train of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizer. The emergent spectral modulation is sinusoidal with its amplitude scaling with the degree of linear polarization and its phase scaling with the angle of linear polarization. The large advantage of this passive setup is that all polarization information is, in principle, contained in a single spectral measurement, thereby eliminating all differential effects that potentially create spurious polarization signals. Since the polarization properties are obtained through curve fitting, the susceptibility to noise is relatively low. We provide general design options for a spectral modulator and describe the design of a prototype modulator. Currently, the setup in combination with a dedicated retrieval algorithm can be used to measure linear polarization signals with a relative accuracy of 5%.



قيم البحث

اقرأ أيضاً

While polarisation sensing is vital in many areas of research, with applications spanning from microscopy to aerospace, traditional approaches are limited by method-related error amplification or accumulation, placing fundamental limitations on preci sion and accuracy in single-shot polarimetry. Here, we put forward a new measurement paradigm to circumvent this, introducing the notion of a universal full Poincare generator to map all polarisation analyser states into a single vectorially structured light field, allowing all vector components to be analysed in a single-shot with theoretically user-defined precision. To demonstrate the advantage of our approach, we use a common GRIN optic as our mapping device and show mean errors of <1% for each vector component, enhancing the sensitivity by around three times, allowing us to sense weak polarisation aberrations not measurable by traditional single-shot techniques. Our work paves the way for next-generation polarimetry, impacting a wide variety of applications relying on weak vector measurement.
We present high precision measurements of polarization rotations in the frequency range from 0.1 to 2.5 THz using a polarization modulation technique. A motorized stage rotates a polarizer at ~80 Hz, and the resulting modulation of the polarization i s measured by a lock-in technique. We achieve an accuracy of 0.05{deg} (900 {mu}rad) and a precision of 0.02{deg} (350 {mu}rad) for small rotation angles. A detailed mathematical description of the technique is presented, showing its ability to fully characterize elliptical polarizations from 0.1 to 2.5 THz.
189 - B. Wetzel , A. Stefani , L. Larger 2012
The ability to measure real-time fluctuations of ultrashort pulses propagating in optical fiber has provided significant insights into fundamental dynamical effects such as modulation instability and the formation of frequency-shifting rogue wave sol itons. We report here a detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components. For two different propagation distances corresponding to the onset phase of spectral broadening and the fully-developed supercontinuum, we measure real time noise across the supercontinuum bandwidth, and we quantify the supercontinuum noise using statistical higher-order moments and a frequency-dependent intensity correlation map. We identify correlated spectral regions within the supercontinuum associated with simultaneous sideband generation, as well as signatures of pump depletion and soliton-like pump dynamics. Experimental results are in excellent agreement with simulations.
A phenomenological model for spectral broadening of incoherent light in silica fibers via self-phase modulation and dispersion is presented, aiming at providing a qualitative and readily accessible description of incoherent light spectral broadening. In this model, the incoherent light is approximated by a cosine power-modulated light with modulation parameters depending on the coherent time and the dispersion in fibers. A simple and practical method for spectral broadening predictions is given and demonstrated by both the straightforward NLSE-based numerical modeling and series of experiments including narrowband and broadband incoherent light in passive fibers and fiber amplifiers.
The build-up dynamics of a continuous spectrum under the action of a weak laser field on a Fano resonance with the use of the pulses with the Lorentz spectrum and ultrashort pulses in the wavelet form is investigated. A dispersion-time excitation dep endence of the Fano resonances in a He atom, in an InP impurity semiconductor, in longitudinal optical LO-phonons of a shallow donor exciton in pure ZnO crystals, and in metamaterials are calculated. The numerical simulation of the dynamics has shown time-dependent formation a Fano spectral profile in the systems of different physical natures under the action of ultrashort pulses with attosecond and femtosecond durations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا