ترغب بنشر مسار تعليمي؟ اضغط هنا

The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. Wit h the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.
We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, pr oviding sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.
The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approxim ately 58%/sqrt(E/GeV}. This resolution is improved to approximately 45%/sqrt(E/GeV) with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to Geant4 simulations yield resolution improvements comparable to those observed for real data.
An upgraded asymmetric e+e- flavor factory, SuperKEKB, is planned at KEK. It will deliver a luminosity of 8 x 10^35 cm^-2 s^-1, allowing precision measurements in the flavor sector which can probe new physics well beyond the scales accessible to dire ct observation. The increased luminosity also requires upgrades of the Belle detector. Of critical importance here is a new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution. This new detector will consist of two detector layers close to the interaction point, using DEPFET pixel sensors with 50 um thick silicon in the active area.
We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transvers e momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0s in their parent jets was found to be around 0.7 for electromagnetically triggered events.
The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is in the process of designing and constructing a forward tracking system based on triple GEM technology. This upgrade is necessary to give STAR the capability to reconstruct and identify the charge sign of W bosons over an extended rapidity range through their leptonic decay mode into an electron (positron) and a neutrino. This will allow a detailed study of the flavor-separated spin structure of the proton in polarized p + p collisions uniquely available at RHIC. The Forward GEM Tracker FGT will consist of six triple GEM disks with an outer radius of ~39 cm and an inner radius of ~10.5 cm, arranged along the beam pipe, covering the pseudo-rapidity range from 1.0 to 2.0 over a wide range of collision vertices. The GEM foils will be produced by Tech-Etch, Inc. Beam tests with test detectors using 10 cm x 10 cm Tech-Etch GEM foils and a two dimensional orthogonal strip readout have demonstrated a spatial resolution of 70 um or better and high efficiency.
Three Gas-Electron-Multiplier tracking detectors with an active area of 10 cm x 10 cm and a two-dimensional, laser-etched orthogonal strip readout have been tested extensively in particle beams at the Meson Test Beam Facility at Fermilab. These detec tors used GEM foils produced by Tech-Etch, Inc. They showed an efficiency in excess of 95% and spatial resolution better than 70 um. The influence of the angle of incidence of particles on efficiency and spatial resolution was studied in detail.
133 - F. Simon , B. Azmoun , U. Becker 2007
The planned tracking upgrade of the STAR experiment at RHIC includes a large-area GEM tracker used to determine the charge sign of electrons and positrons produced from W+(-) decays. For such a large-scale project commercial availability of GEM foils is necessary. We report first results obtained with a triple GEM detector using GEM foils produced by Tech-Etch Inc. of Plymouth, MA, USA. Measurements of gain uniformity, long-term stability as well as measurements of the energy resolution for X-Rays are compared to results obtained with an identical detector using GEM foils produced at CERN. A quality assurance procedure based on optical tests using an automated high-resolution scanner has been established, allowing a study of the correlation of the observed behavior of the detector and the geometrical properties of the GEM foils. Detectors based on Tech-Etch and CERN produced foils both show good uniformity of the gain over the active area and stable gain after an initial charge-up period, making them well suited for precision tracking applications.
Future measurements of the flavor-separated spin structure of the proton via parity-violating W boson production at RHIC require an upgrade of the forward tracking system of the STAR detector. This upgrade will allow the reconstruction of the charge sign of electrons and positrons produced from decaying W bosons. A design based on six large area triple GEM disks using GEM foils produced by Tech-Etch Inc. has emerged as a cost-effective solution to provide the necessary tracking precision. We report first results from a beam test of three test detectors using Tech-Etch produced GEM foils and a laser etched two dimensional strip readout. The detectors show good operational stability, high efficiency and a spacial resolution of around 70 um or better, exceeding the requirements for the forward tracking upgrade. The influence of the angle of incidence of the particles on the spatial resolution of the detectors has also been studied in detail.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا