ترغب بنشر مسار تعليمي؟ اضغط هنا

253 - H. G. Dosch , E. Ferreira 2015
The energy dependence of the cross sections for electromagnetic diffractive processes can be well described by a single power, $W^delta$. For $J/psi$ photoproduction this holds in the range from 20 GeV to 2 TeV. This feature is most easily explained by a single pole in the angular momentum plane which depends on the scale of the process, at least in a certain range of values of the momentum transfer. It is shown that this assumption allows a unified description of all electromagnetic elastic diffractive processes. We also discuss an alternative model with an energy dependent dipole cross section, which is compatible with the data up to 2 TeV and which shows an energy behaviour typical for a cut in the angular momentum plane.
264 - H. G. Dosch , E. Ferreira 2015
We test the hypothesis that diffractive scattering in the perturbative and non-perturbative domain is determined by the exchange of a single pomeron with a scale dependent trajectory. Present data on diffractive vector meson production are well compa tible with this model and recent results for $J/psi$ photoproduction at LHC strongly support it. The model is inspired by concepts of gauge/string duality applied to the pomeron.
Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all high energy region, the behavior of observables in the LHC collisions in the range $sqrt{s}$ = 2.76 - 14 TeV is discussed. Similarly to the c ase of 7 TeV data, the proposed amplitudes give excellent description of the preliminary 8 TeV data. We discuss the expected energy dependence of the observable quantities, and present predictions for the experiments at 2.76, 13 and 14 TeV.
Applying the recently constructed analytic representation for the pp scattering amplitudes, we present a study of p-air cross sections, with comparison to the data from Extensive Air Shower (EAS) measurements. The amplitudes describe with precision a ll available accelerator data at ISR, SPS and LHC energies, and its theoretical basis, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permit reliable extrapolation to higher energies and to asymptotic ranges. The comparison with cosmic ray data is very satisfactory in the whole pp energy interval from 1 to 100 TeV. High energy asymptotic behaviour of cross sections is investigated in view of the geometric scaling property of the amplitudes. The amplitudes predict that the proton does not behave as a black disk even at asymptotically high enegies, and we discuss possible non-trivial consequences of this fact for pA collision cross sections at higher energies.
Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all energy region, the behavior of observables in the LHC collisions in the range $sqrt{s}$= 2.76 - 14 TeV is discussed. Similarly to the case of 7 TeV data, the proposed amplitudes give excellent description of the preliminary 8 TeV data. We discuss the expected energy dependence of the observable quantities, and present predictions for the experiments at 2.76, 13 and 14 TeV.
An analysis of p-air cross section data from Extensive Air Shower (EAS) measurements is presented, based on an analytical representation of the pp scattering amplitudes that describes with high precision all available accelerator data at ISR, SPS and LHC energies. The theoretical basis of the representation, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permits reliable extrapolation to high energy cosmic ray and asymptotic energy ranges. Calculations of the p-air production cross section based on Glauber formalism are made using the input values of the pp forward scattering parameters at high energies, with attention given to the independence of the real and imaginary slope parameters. The influence of contributions of diffractive intermediate states, according to Good-Walker formalism, is examined. The comparison with cosmic ray data is very satisfactory in the whole pp energy interval from 1 to 100 TeV. High energy asymptotic behavior of p-air cross sections is investigated in view of the geometric scaling property of the pp amplitudes. The observed energy dependence of the ratio between p-air and pp cross sections in the data is shown to be related to the nature of the pp cross section at high energies, that does not agree with the black disk image.
We propose analytical forms, in both momentum transfer and impact parameter spaces, for the amplitudes of elastic pp scattering, giving coherent and accurate description of the observables at all energies $sqrt{s}geq 20$ GeV. The real and imaginary p arts are separately identified through their roles at small and large t values. The study of the differential cross sections in b-space leads to the understanding of the effective interaction ranges contributing to elastic and inelastic processes.
The data on p$mathrm{bar p}$ elastic scattering at 1.8 and 1.96 TeV are analysed in terms of real and imaginary amplitudes, in a treatment with high accuracy, covering the whole t-range and satisfying the expectation of dispersion relation for amplit udes and for slopes. A method is introduced for determination of the total cross section and the other forward scattering parameters and to check compatibility of E-710, CDF and the recent D0 data. Slopes $B_R$ and $ B_I$ of the real and imaginary amplitudes, treated as independent quantities, influence the amplitudes in the whole t-range and are important for the determination of the total cross section. The amplitudes are fully constructed, and a prediction is made of a marked dip in $ dsigma/dt$ in the $|t|$ range 3 - 5 GeV$^2$ due to the universal contribution of the process of three gluon exchange.
We discuss various aspects of vector meson production, first analysing the interplay between perturbative and nonperturbative aspects of the QCD calculation. Using a general method adapted to incorporate both perturbative and nonpertubative aspects, we show that nonperturbative effects are important for all experimentally available values of the photon virtuality Q2. We compare the huge amount of experimental information now available with our theoretical results obtained using a specific nonperturbative model without free parameters, showing that quite simple features are able to explain the data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا