ترغب بنشر مسار تعليمي؟ اضغط هنا

pp Interaction in Extended Air Showers

110   0   0.0 ( 0 )
 نشر من قبل Erasmo Ferreira
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Applying the recently constructed analytic representation for the pp scattering amplitudes, we present a study of p-air cross sections, with comparison to the data from Extensive Air Shower (EAS) measurements. The amplitudes describe with precision all available accelerator data at ISR, SPS and LHC energies, and its theoretical basis, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permit reliable extrapolation to higher energies and to asymptotic ranges. The comparison with cosmic ray data is very satisfactory in the whole pp energy interval from 1 to 100 TeV. High energy asymptotic behaviour of cross sections is investigated in view of the geometric scaling property of the amplitudes. The amplitudes predict that the proton does not behave as a black disk even at asymptotically high enegies, and we discuss possible non-trivial consequences of this fact for pA collision cross sections at higher energies.

قيم البحث

اقرأ أيضاً

We present a new version of the hadron interaction event generator Sibyll. While the core ideas of the model have been preserved, the new version handles the production of baryon pairs and leading particles in a new way. In addition, production of ch armed hadrons is included. Updates to the model are informed by high-precision measurements of the total and inelastic cross sections with the forward detectors at the LHC that constrain the extrapolation to ultra-high energy. Minimum-bias measurements of particle spectra and multiplicities support the tuning of fragmentation parameters. This paper demonstrates the impact of these changes on air shower observables such as $X_{rm max}$ and $N_mu$, drawing comparisons with other contemporary cosmic ray interaction models.
We estimate the rate of observable Horizontal and Upward Tau Air-Showers (HORTAUs, UPTAUS) considering both the Earth opacity and the finite size of the terrestrial atmosphere. We calculate the effective target volumes and masses for Tau air-showers emerging from the Earth. The resulting model-independent masses for satellite experiments such as EUSO may encompass at E_nu_tau = 10^19 eV a very large volume, V= 1020 km^3. Adopting simple power law neutrino fluxes, E^-2 and E^-1, calibrated to GZK-like and Z-Burst-like models, we estimate that at E= 10^19 eV nearly half a dozen horizontal shower events should be detected by EUSO in three years of data collection by the guaranteed GZK neutrino flux. We also find that the equivalent mass for an Earth outer layer made of rock is dominant compared to the water, contrary to simplified all-rock/all-water Earth models and previous Montecarlo simulations. Therefore we expect an enhancement of neutrino detection along continental shelves nearby the highest mountain chains, also given the better geometrical acceptance for Earth skimming neutrinos. The Auger experiment might reveal such a signature at E_nu= 10^{18} eV (with 26 events in 3 yr) towards the Andes, if the angular resolution at the horizon (both in azimuth and zenith) would reach an accuracy of nearly one degree needed to disentangle tau air showers from common UHECR. The number of events increases at lower energies; therefore we suggest an extension of the EUSO and Auger sensitivity down to (or even below) E_nu = 10^19 eV and E_nu = 10^18 eV respectively.
In order to examine a muon excess observed by the Pierre Auger Observatory, detailed Monte Carlo simulations were carried out for primary protons, iron nuclei and strangelets (hypothetical stable lumps of strange quark matter). We obtained a rough ag reement between the simulations and the data for ordinary nuclei without any contribution of strangelets in primary flux of cosmic rays. Our simulations suggest that the shower observables are dominated by details of hadronic interaction models.
At ground level, the azimuthal distribution of muons in inclined Extensive Air Showers (EAS) is asymmetric, mainly due to geometric effects. Several EAS observables sensitive to the primary particle mass, are constructed after mapping the density of secondary particles from the ground plane to the shower plane (perpendicular to the shower axis). A simple orthogonal projection of the muon coordinates onto this plane distorts the azimuthal symmetry in the shower plane. Using CORSIKA simulations, we correct for this distortion by projecting each muon onto the normal plane following its incoming direction, taking also into account the attenuation probability. We show that besides restoring the azimuthal symmetry of muons density around the shower axis, the application of this procedure has a significant impact on the reconstruction of the distribution of the muon production depth and of its maximum, $X_{rm max}^{mu}$, which is an EAS observable sensitive to the primary particle mass. Our results qualitatively suggest that not including it in the reconstruction process of $X_{rm max}^{mu}$ may introduce a bias in the results obtained by analyzing the actual data on the basis of Monte Carlo simulations.
Decays of mesons produced in cosmic ray induced air showers in Earths atmosphere can lead to a flux of light exotic particles which can be detected in underground experiments. We evaluate the energy spectra of the light neutral mesons $pi^0$, $eta$, $rho^0$, $omega$, $phi$ and $J/psi$ produced in interactions of cosmic ray protons and helium nuclei with air using QCD inspired event generators. Summing up the mesons produced in the individual hadronic interactions of air showers, we obtain the resulting fluxes of undecayed mesons. As an application, we re-consider the case of millicharged particles created in the electromagnetic decay channels of neutral mesons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا