ﻻ يوجد ملخص باللغة العربية
We test the hypothesis that diffractive scattering in the perturbative and non-perturbative domain is determined by the exchange of a single pomeron with a scale dependent trajectory. Present data on diffractive vector meson production are well compatible with this model and recent results for $J/psi$ photoproduction at LHC strongly support it. The model is inspired by concepts of gauge/string duality applied to the pomeron.
The energy dependence of the cross sections for electromagnetic diffractive processes can be well described by a single power, $W^delta$. For $J/psi$ photoproduction this holds in the range from 20 GeV to 2 TeV. This feature is most easily explained
In the framework of semihard (k$_T$ factorization) QCD approach, we consider the differential cross sections of $D^{*pm}$ meson production at HERA. The consideration is based on BFKL and CCFM gluon distributions. We find that in the case of BFKL LO g
We have recently studied the QCD pomeron loop evolution equations in zero transverse dimensions [Shoshi:2005pf]. Using the techniques developed in [Shoshi:2005pf] together with the AGK cutting rules, we present a calculation of single, double and cen
Central diffractive production of heavy states (massive dijets, Higgs boson) is studied in the exclusive mode using a new Hybrid Pomeron Model (HPM). Built from Hybrid Pomerons defined by the combination of one hard and one soft color exchanges, the
We review the evolution of the studies of diffractive processes in the strong interaction over the last 60 years. First, we briefly outline the early developments of the theory based on analyticity and unitarity of the S-matrix, including the derivat