ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that th e algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.
We studied spherically symmetric solutions in scalar-torsion gravity theories in which a scalar field is coupled to torsion with a derivative coupling. We obtained the general field equations from which we extracted a decoupled master equation, the s olution of which leads to the specification of all other unknown functions. We first obtained an exact solution which represents a new wormhole-like solution dressed with a regular scalar field. Then, we found large distance linearized spherically symmetric solutions in which the space asymptotically is AdS.
We investigate the cosmological behavior of mimetic F(R) gravity. This scenario is the F(R) extension of usual mimetic gravity classes, which are based on re-parametrizations of the metric using new, but not propagating, degrees of freedom, that can lead to a wider family of solutions. Performing a detailed dynamical analysis for exponential, power-law, and arbitrary F(R) forms, we extracted the corresponding critical points. Interestingly enough, we found that although the new features of mimetic F(R) gravity can affect the universe evolution at early and intermediate times, at late times they will not have any effect, and the universe will result at stable states that coincide with those of usual F(R) gravity. However, this feature holds for the late-time background evolution only. On the contrary, the behavior of the perturbations is expected to be different since the new term contributes to the perturbations even if it does not contribute at the background level.
75 - Remo Garattini 2014
We investigate the connection between Gravitys Rainbow and Horava-Lifshitz gravity, since both theories incorporate a modification in the UltraViolet regime which improves their quantum behavior at the cost of the Lorentz invariance loss. In particul ar, extracting the Wheeler-De Witt equations of the two theories in the case of Friedmann-Lemaitre-Robertson-Walker and spherically symmetric geometries, we establish a correspondence that bridges them.
We investigate the cosmological applications of $F(T,T_G)$ gravity, which is a novel modified gravitational theory based on the torsion invariant $T$ and the teleparallel equivalent of the Gauss-Bonnet term $T_{G}$. $F(T,T_{G})$ gravity differs from both $F(T)$ theories as well as from $F(R,G)$ class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantom-like, or experience the phantom-divide crossing, depending on the parameters of the model.
We investigate the cosmological implications of the recently constructed 5-dimensional braneworld cosmology with gravitating Nambu-Goto matching conditions. Inserting both matter and radiation sectors, we first extract the analytical cosmological sol utions. Additionally, we use observational data from Type Ia Supernovae (SNIa) and Baryon Acoustic Oscillations (BAO), along with requirements of Big Bang Nucleosynthesis (BBN), in order to impose constraints on the parameters of the model. We find that the scenario at hand is in very good agreement with observations, and thus a small departure from the standard Randall-Sundrum scenario is allowed.
We perform a combined perturbation and observational investigation of the scenario of non-minimal derivative coupling between a scalar field and curvature. First we extract the necessary condition that ensures the absence of instabilities, which is f ulfilled more sufficiently for smaller coupling values. Then using Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations (BAO), and Cosmic Microwave Background (CMB) observations, we show that, contrary to its significant effects on inflation, the non-minimal derivative coupling term has a negligible effect on the universe acceleration, since it is driven solely by the usual scalar-field potential. Therefore, the scenario can provide a unified picture of early and late time cosmology, with the non-minimal derivative coupling term responsible for inflation, and the usual potential responsible for late-time acceleration. Additionally, the fact that the necessary coupling term does not need to be large, improves the model behavior against instabilities.
We perform a detailed dynamical analysis of various cosmological scenarios in extended (varying-mass) nonlinear massive gravity. Due to the enhanced freedom in choosing the involved free functions, this cosmological paradigm allows for a huge variety of solutions that can attract the universe at late times, comparing to scalar-field cosmology or usual nonlinear massive gravity. Amongst others, it accepts quintessence, phantom, or cosmological-constant-like late-time solutions, which moreover can alleviate the coincidence problem. These features seem to be general and non-sensitive to the imposed ansantzes and model parameters, and thus extended nonlinear massive gravity can be a good candidate for the description of nature.
We extract exact charged black-hole solutions with flat transverse sections in the framework of D-dimensional Maxwell-f(T) gravity, and we analyze the singularities and horizons based on both torsion and curvature invariants. Interestingly enough, we find that in some particular solution subclasses there appear more singularities in the curvature scalars than in the torsion ones. This difference disappears in the uncharged case, or in the case where f(T) gravity becomes the usual linear-in-T teleparallel gravity, that is General Relativity. Curvature and torsion invariants behave very differently when matter fields are present, and thus f(R) gravity and f(T) gravity exhibit different features and cannot be directly re-casted each other.
In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا