ﻻ يوجد ملخص باللغة العربية
We investigate the cosmological implications of the recently constructed 5-dimensional braneworld cosmology with gravitating Nambu-Goto matching conditions. Inserting both matter and radiation sectors, we first extract the analytical cosmological solutions. Additionally, we use observational data from Type Ia Supernovae (SNIa) and Baryon Acoustic Oscillations (BAO), along with requirements of Big Bang Nucleosynthesis (BBN), in order to impose constraints on the parameters of the model. We find that the scenario at hand is in very good agreement with observations, and thus a small departure from the standard Randall-Sundrum scenario is allowed.
Over the last years some interest has been gathered by $f(Q)$ theories, which are new candidates to replace Einsteins prescription for gravity. The non-metricity tensor $Q$ allows to put forward the assumption of a free torsionless connection and, co
By incorporating quantum aspects of gravity, Loop Quantum Cosmology (LQC) provides a self-consistent extension of the inflationary scenario, allowing for modifications in the primordial inflationary power spectrum with respect to the standard General
We consider the holographic Friedman-Robertson-Walker (hFRW) universe on the 4-dimensional membrane embedded in the 5-dimensional bulk spacetime and fit the parameters with the observational data. In order to fully account for the phenomenology of th
We perform a combined perturbation and observational investigation of the scenario of non-minimal derivative coupling between a scalar field and curvature. First we extract the necessary condition that ensures the absence of instabilities, which is f
We consider an interacting field theory model that describes the interaction between dark energy - dark matter interaction. Only for a specific interaction term, this interacting field theory description has an equivalent interacting fluid descriptio