ﻻ يوجد ملخص باللغة العربية
We investigate the cosmological applications of $F(T,T_G)$ gravity, which is a novel modified gravitational theory based on the torsion invariant $T$ and the teleparallel equivalent of the Gauss-Bonnet term $T_{G}$. $F(T,T_{G})$ gravity differs from both $F(T)$ theories as well as from $F(R,G)$ class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantom-like, or experience the phantom-divide crossing, depending on the parameters of the model.
The $f(T,T_G)$ class of gravitational modification, based on the quadratic torsion scalar $T$, as well as on the new quartic torsion scalar $T_G$ which is the teleparallel equivalent of the Gauss-Bonnet term, is a novel theory, different from both $f
[Abridged] In its standard formulation, the $f(T)$ field equations are not invariant under local Lorentz transformations, and thus the theory does not inherit the causal structure of special relativity. A locally Lorentz covariant $f(T)$ gravity theo
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an
The evolution of the configurational entropy of the universe relies on the growth rate of density fluctuations and on the Hubble parameter. In this work, I present the evolution of configurational entropy for the power-law $f(T)$ gravity model of the
$f(Q,T)$ gravity is a novel extension of the symmetric teleparallel gravity where the Lagrangian $L$ is represented through an arbitrary function of the nonmetricity $Q$ and the trace of the energy-momentum tensor $T$ cite{fqt}. In this work, we have