ترغب بنشر مسار تعليمي؟ اضغط هنا

82 - E. E. Eyler 2013
Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple inter face needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily-modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small daughter boards for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 X 0.8 circuit card.
64 - S. E. Galica , L. Aldridge , 2013
Stimulated optical forces offer a simple and efficient method for providing optical forces far in excess of the saturated radiative force. The bichromatic force, using a counterpropagating pair of two-color beams, has so far been the most effective o f these stimulated forces for deflecting and slowing atomic beams. We have numerically studied the evolution of a two-level system under several different bichromatic and polychromatic light fields, while retaining the overall geometry of the bichromatic force. New insights are gained by studying the time-dependent trajectory of the Bloch vector, including a better understanding of the remarkable robustness of bi- and polychromatic forces with imbalanced beam intensities. We show that a four-color polychromatic force exhibits great promise. By adding new frequency components at the third harmonic of the original bichromatic detuning, the force is increased by nearly 50% and its velocity range is extended by a factor of three, while the required laser power is increased by only 33%. The excited-state fraction, crucial to possible application to molecules, is reduced from 41% to 24%. We also discuss some important differences between polychromatic forces and pulse trains from a high-repetition-rate laser.
173 - M. A. Chieda , E. E. Eyler 2012
We examine two approaches for significantly extending the velocity range of the optical bichromatic force (BCF), to make it useful for laser deceleration of atomic and molecular beams. First, we present experimental results and calculations for BCF d eceleration of metastable helium using very large BCF detunings, and discuss the limitations of this approach. We consider in detail the constraints, both inherent and practical, that set the usable upper limit of the BCF. We then show that a more promising approach is to utilize a BCF profile with a relatively small velocity range in conjunction with chirped Doppler shifts, to keep the force resonant with the atoms as they are slowed. In an initial experimental test of this chirped BCF method, helium atoms are slowed by $sim 370$ m/s using a BCF profile with a velocity width of $lesssim 125$ m/s. Straightforward scaling of the present results indicates that a decelerator for He* capable of loading a magneto-optical trap (MOT) can yield a brightness comparable to a much larger Zeeman slower.
We examine the prospects for utilizing the optical bichromatic force (BCF) to greatly enhance laser deceleration and cooling for near-cycling transitions in small molecules. We discuss the expected behavior of the BCF in near-cycling transitions with internal degeneracies, then consider the specific example of decelerating a beam of calcium monofluoride molecules. We have selected CaF as a prototype molecule both because it has an easily-accessible near-cycling transition, and because it is well-suited to studies of ultracold molecular physics and chemistry. We also report experimental verification of one of the key requirements, the production of large bichromatic forces in a multi-level system, by performing tests in an atomic beam of metastable helium.
104 - L. Aldridge , P. L. Gould , 2011
By combining a recent precise measurement of the ionization energy of $^{87}$Rb with previous measurements of electronic and hyperfine structure, an accurate value for the $^{85}textrm{Rb}-^{87}textrm{Rb}$ isotope shift of the 5$^2S_{1/2}$ ground sta te can be determined. In turn, comparison with additional spectroscopic data makes it possible for the first time to evaluate isotope shifts for the low-lying excited states, accurate in most cases to about 1 MHz. In a few cases, the specific mass shift contribution can be determined in addition to the total shift. This information is particularly useful for spectroscopic analysis of transitions to Rydberg states, and for tests of atomic theory.
208 - R. Pires , M. Ascoli , E. E. Eyler 2009
We report on hyperfine-resolved spectroscopic measurements of the electric-dipole forbidden 5$p_{3/2} to 8p_{1/2}$ transition in a sample of ultracold $^{87}$Rb atoms. The hyperfine selection rules enable the weak magnetic-dipole (M1) contribution to the transition strength to be distinguished from the much stronger electric-quadrupole (E2) contribution. An upper limit on the M1 transition strength is determined that is about 50 times smaller than an earlier experimental determination. We also calculate the expected value of the M1 matrix element and find that it is less than the upper limit extracted from the experiment.
We report the observation of dipole-forbidden, but quadrupole-allowed, one-photon transitions to high Rydberg states in Rb. Using pulsed UV excitation of ultracold atoms in a magneto-optical trap, we excite $5s to nd$ transitions over a range of prin cipal quantum numbers $n=27-59$. Compared to dipole-allowed (E1) transitions from $5s to np$, these E2 transitions are weaker by a factor of approximately 2000. We also report measurements of the anomalous $np_{3/2} : np_{1/2}$ fine-structure transition strength ratio for $n=28-75$. Both results are in agreement with theoretical predictions.
77 - M Ascoli , E E Eyler , D Kawall 2007
We describe the design and realization of a scheme for uv laser spectroscopy of singly-ionized iron (Fe II) with very high resolution. A buffer-gas cooled laser ablation source is used to provide a plasma close to room temperature with a high density of Fe II. We combine this with a scheme for pulsed-laser saturation spectroscopy to yield sub-Doppler resolution. In a demonstration experiment, we have examined an Fe II transition near 260 nm, attaining a linewidth of about 250 MHz. The method is well-suited to measuring transition frequencies and hyperfine structure. It could also be used to measure small isotope shifts in isotope-enriched samples.
158 - H. K. Pechkis , D. Wang , Y. Huang 2007
We have studied the effect of resonant electronic state coupling on the formation of ultracold ground-state $^{85}$Rb$_2$. Ultracold Rb$_2$ molecules are formed by photoassociation (PA) to a coupled pair of $0_u^+$ states, $0_u^+(P_{1/2})$ and $0_u^+ (P_{3/2})$, in the region below the $5S+5P_{1/2}$ limit. Subsequent radiative decay produces high vibrational levels of the ground state, $X ^1Sigma_g^+$. The population distribution of these $X$ state vibrational levels is monitored by resonance-enhanced two-photon ionization through the $2 ^1Sigma_u^+$ state. We find that the populations of vibrational levels $v$=112$-$116 are far larger than can be accounted for by the Franck-Condon factors for $0_u^+(P_{1/2}) to X ^1Sigma_g^+$ transitions with the $0_u^+(P_{1/2})$ state treated as a single channel. Further, the ground-state molecule population exhibits oscillatory behavior as the PA laser is tuned through a succession of $0_u^+$ state vibrational levels. Both of these effects are explained by a new calculation of transition amplitudes that includes the resonant character of the spin-orbit coupling of the two $0_u^+$ states. The resulting enhancement of more deeply bound ground-state molecule formation will be useful for future experiments on ultracold molecules.
We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon $2^3S to 4^3S$ interval, and for resonant two-photon excitation to high Rydberg states, $2^3S to 3^3P to n^3S,D$. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the $1^1S to 2^1S$ transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا