ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution saturation spectroscopy of singly-ionized iron with a pulsed uv laser

114   0   0.0 ( 0 )
 نشر من قبل Edward Eyler
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the design and realization of a scheme for uv laser spectroscopy of singly-ionized iron (Fe II) with very high resolution. A buffer-gas cooled laser ablation source is used to provide a plasma close to room temperature with a high density of Fe II. We combine this with a scheme for pulsed-laser saturation spectroscopy to yield sub-Doppler resolution. In a demonstration experiment, we have examined an Fe II transition near 260 nm, attaining a linewidth of about 250 MHz. The method is well-suited to measuring transition frequencies and hyperfine structure. It could also be used to measure small isotope shifts in isotope-enriched samples.



قيم البحث

اقرأ أيضاً

High-precision laser spectroscopy of atomic hydrogen has led to an impressive accuracy in tests of bound-state quantum electrodynamics (QED). At the current level of accuracy many systematics have to be studied very carefully and only independent mea surements provide the ultimate cross-check. This has been proven recently by measurements in muonic hydrogen, eventually leading to a significant shift of the CODATA recommended values of the proton charge radius and the Rydberg constant. We aim to contribute to tests of fundamental physics by measuring the 1S-2S transition in the He$^+$ ion for the first time. Combined with measurements in muonic helium ions this can probe the value of the Rydberg constant, test higher-order QED terms, or set benchmarks for ab initio nuclear polarizability calculations. We extend the Ramsey-comb spectroscopy method to the XUV using high-harmonic generation in order to excite a single, trapped He$^+$ ion.
In a frequency-modulation spectroscopy experiment, using the radiation from a single frequency diode laser, the spectra of molecular iodine hyperfine structure near 640 nm were recorded on the transition $B^3Pi_{0_u^{+}}-X^1Sigma^+_{g}$. The frequenc y reference given by the value of the modulation frequency (12.5 MHz in given experiment) allows determination of the frequency differences between hyperfine components with accuracy better than 0.1 MHz using the fitting procedure in experiment with only one laser.
134 - P. Zabawa , A. Wakim , A. Neukirch 2010
We demonstrate that a near-dissociation photoassociation resonance can be used to create a deeply bound molecular sample of ultracold NaCs. To probe the resulting vibrational distribution of the sample, we use a new technique that can be applied to a ny ultracold molecular system. We utilize a tunable pulsed dye laser to produce efficient spectroscopic scans ($sim700$ cm$^{-1}$ at a time) in which we observe the $1^{1} Sigma^{+}rightarrow 2^{1}Sigma^{+}-2^{3}Pi$ vibrational progression, as well as the dissociation limit to the Cs 6$^{2}$P$_{3/2}$ asymptote. We assign $1^{1} Sigma^{+}$$(emph{v}$ = 4, 5, 6, 11, 19) vibrational levels in our sample.
138 - Beno^it Darquie 2010
Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take this challenge up, a consortium of physicists, chemists, theoreticians and spectroscopists has been established and aims at measuring PV energy differences between two enantiomers by using high-resolution laser spectroscopy. In this article, we present our common strategy to reach this goal, the progress accomplished in the diverse areas, and point out directions for future PV observations. The work of Andre Collet on bromochlorofluoromethane enantiomers, their synthesis and their chiral recognition by cryptophanes made feasible the first generation of experiments presented in this paper.
Barium monohydride (BaH) is an attractive candidate for extending laser cooling and trapping techniques to diatomic hydrides. The apparatus and high-resolution optical spectroscopy presented here demonstrate progress toward this goal. A cryogenic buf fer-gas-cooled molecular beam of BaH was constructed and characterized. Pulsed laser ablation into cryogenic helium buffer gas delivers $sim1times10^{10}$ molecules/sr/pulse in the X$^2Sigma^+$ ($v=0,N=1$) state of primary interest. More than $1times10^7$ of these molecules per pulse enter the downstream science region with forward velocities below 100 m/s and transverse temperature of 0.1 K. This molecular beam enabled high-resolution optical spectra of BaH in quantum states relevant to laser slowing and cooling. The reported measurements include hyperfine structure and magnetic $g$ factors in the X$^2Sigma^+$, B$^2Sigma^+$, and A$^2Pi_{1/2}$ states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا