ﻻ يوجد ملخص باللغة العربية
We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon $2^3S to 4^3S$ interval, and for resonant two-photon excitation to high Rydberg states, $2^3S to 3^3P to n^3S,D$. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the $1^1S to 2^1S$ transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.
Microresonator-based soliton frequency combs - microcombs - have recently emerged to offer low-noise, photonic-chip sources for optical measurements. Owing to nonlinear-optical physics, microcombs can be built with various materials and tuned or stab
Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection
Spectroscopy is a powerful tool for studying molecules and is commonly performed on large thermal molecular ensembles that are perturbed by motional shifts and interactions with the environment and one another, resulting in convoluted spectra and lim
Continuous wave (CW) lasers are the enabling technology for producing ultracold atoms and molecules through laser cooling and trapping. The resulting pristine samples of slow moving particles are the de facto starting point for both fundamental and a
We apply direct frequency-comb spectroscopy, in combination with precision cw spectroscopy, to measure the ${rm 4s4p} ^3P_1 to {rm 4s5s} ^3S_1$ transition frequency in cold calcium atoms. A 657 nm ultrastable cw laser was used to excite atoms on the