ترغب بنشر مسار تعليمي؟ اضغط هنا

We aim to examine the relative cross-calibration accuracy of the on-axis effective areas of the XMM-Newton EPIC pn and MOS instruments. Spectra from a sample of 46 bright, high-count, non-piled-up isolated on-axis point sources are stacked together, and model residuals are examined to characterize the EPIC MOS-to-pn inter-calibration. The MOS1-to-pn and MOS2-to-pn results are broadly very similar. The cameras show the closest agreement below 1 keV, with MOS excesses over pn of 0-2% (MOS1/pn) and 0-3% (MOS2/pn). Above 3 keV, the MOS/pn ratio is consistent with energy-independent (or only mildly increasing) excesses of 7-8% (MOS1/pn) and 5-8% (MOS2/pn). In addition, between 1-2 keV there is a `silicon bump - an enhancement at a level of 2-4% (MOS1/pn) and 3-5% (MOS2/pn). Tests suggest that the methods employed here are stable and robust. The results presented here provide the most accurate cross-calibration of the effective areas of the XMM-Newton EPIC pn and MOS instruments to date. They suggest areas of further research where causes of the MOS-to-pn differences might be found, and allow the potential for corrections to and possible rectification of the EPIC cameras to be made in the future.
77 - G. W. Fraser 2014
The soft X-ray flux produced by solar axions in the Earths magnetic field is evaluated in the context of ESAs XMM-Newton observatory. Recent calculations of the scattering of axion-conversion X-rays suggest that the sunward magnetosphere could be an observable source of 0.2-10 keV photons. For XMM-Newton, any conversion X-ray intensity will be seasonally modulated by virtue of the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined with the ephemeris of XMM-Newton to predict the seasonal variation of the conversion X-ray intensity. This model is compared with stacked XMM-Newton blank sky datasets from which point sources have been systematically removed. Remarkably, a seasonally varying X-ray background signal is observed. The EPIC count rates are in the ratio of their X-ray grasps, indicating a non-instrumental, external photon origin, with significances of 11(pn), 4(MOS1) and 5(MOS2) sigma. After examining the constituent observations spatially, temporally and in terms of the cosmic X-ray background, we conclude that this variable signal is consistent with the conversion of solar axions in the Earths magnetic field. The spectrum is consistent with a solar axion spectrum dominated by bremsstrahlung- and Compton-like processes, i.e. axion-electron coupling dominates over axion-photon coupling and the peak of the axion spectrum is below 1 keV. A value of 2.2e-22 /GeV is derived for the product of the axion-photon and axion-electron coupling constants, for an axion mass in the micro-eV range. Comparisons with limits derived from white dwarf cooling may not be applicable, as these refer to axions in the 0.01 eV range. Preliminary results are given of a search for axion-conversion X-ray lines, in particular the predicted features due to silicon, sulphur and iron in the solar core, and the 14.4 keV transition line from 57Fe.
The XMM-Newton Slew Survey (XSS) covers a significant fraction of the sky in a broad X-ray bandpass. Although shallow by contemporary standards, in the `classical 2-10 keV band of X-ray astronomy, the XSS provides significantly better sensitivity tha n any currently available all-sky survey. We investigate the source content of the XSS, focussing on detections in the 2-10 keV band down to a very low threshold (> 4 counts net of background). At the faint end, the survey reaches a flux sensitivity of roughly 3e-12 erg/cm2/s (2-10 keV). Our starting point was a sample of 487 sources detected in the XMMSL1d2 XSS at high galactic latitude in the hard band. Through cross-correlation with published source catalogues from surveys spanning the electromagnetic spectrum from radio to gamma-rays, we find that 45% of the sources have likely identifications with normal/active galaxies, 18% are associated with other classes of X-ray object (nearby coronally active stars, accreting binaries, clusters of galaxies), leaving 37% of the XSS sources with no current identification. We go on to define an XSS extragalactic hard band sample comprised of 219 galaxies and active galaxies. We investigate the properties of this extragalactic sample including its X-ray logN-logS distribution. We find that in the low-count limit, the XSS is strongly affected by Eddington bias. There is also a very strong bias in the XSS against the detection of extended sources, most notably clusters of galaxies. A significant fraction of the detections at and around the low-count limit may be spurious. Nevertheless, it is possible to use the XSS to extract a reasonably robust sample of extragalactic sources, excluding galaxy clusters. The differential logN-logS relation of these extragalactic sources matches very well to the HEAO-1 A2 all-sky survey measurements at bright fluxes and to the 2XMM source counts at the faint end.
40 - A. M. Read 2011
We describe here a new full 2-D parameterization of the PSFs of the three XMM-Newton EPIC telescopes as a function of instrument, energy, off-axis angle and azimuthal angle, covering the whole field-of-view of the three EPIC detectors. It models the general PSF envelopes, the primary and secondary spokes, their radial dependencies, and the large-scale azimuthal variations. This PSF model has been constructed via the stacking and centering of a large number of bright, but not significantly piled-up point sources from the full field-of-view of each EPIC detector, and azimuthally filtering the resultant PSF envelopes to form the spoke structures and the gross azimuthal shapes observed. This PSF model is available for use within the XMM-Newton Science Analysis System via the usage of Current Calibration Files XRTi_XPSF_0011.CCF and lat
262 - A.M. Read 2009
The data collected by XMM-Newton as it slews between pointings currently cover almost half the entire sky, and many familiar features and new sources are visible. The soft-band sensitivity limit of the Slew is close to that of the RASS, and a large-a rea Slew-RASS comparison now provides the best opportunity for discovering extremely rare high-variability objects.
In order to discover new X-ray transients, the data taken by XMM-Newton as it slews between targets are being processed and cross-correlated with other X-ray observations. A bright source, XMMSL1 J060636.2-694933, was detected on 18 July 2006 at a position where no previous X-ray source had been seen. The XMM-Newton slew data, plus follow-up dedicated XMM-Newton and Swift observations, plus optical data acquired with the Magellan Clay telescope, and archival All-Sky Automated Survey (ASAS) data were used to classify the new object, and to investigate its properties. No XMM-Newton slew X-ray counts are detected above 1 keV and the source is seen to be over five hundred times brighter than the ROSAT All-Sky Survey upper limit at that position. The line-rich optical spectrum acquired with the Magellan telescope allows the object to be classified as an Ao auroral phase nova, and the soft X-ray spectrum indicates that the nova was in a super-soft source state in the X-ray decline seen in the follow-up X-ray observations. The archival ASAS data suggests that the nova at onset (Oct 2005) was a very fast nova, and an estimate of its distance is consistent with the nova being situated within the LMC. With the discovery presented here of a new classical nova in the LMC, it is clear that XMM-Newton slew data are continuing to offer a powerful opportunity to find new X-ray transient objects.
233 - A.M. Read 2008
In an attempt to catch new X-ray transients while they are still bright, the data taken by XMM-Newton as it slews between targets is being processed and cross-correlated with other X-ray observations as soon as the slew data appears in the XMM-Newton archive. A bright source, XMMSL1 J070542.7-381442, was detected on 9 Oct 2007 at a position where no previous X-ray source had been seen. The XMM slew data and optical data acquired with the Magellan Clay 6.5m telescope were used to classify the new object. No XMM slew X-ray counts are detected above 1keV and the source is seen to be ~750 times brighter than the ROSAT All-Sky Survey upper limit at that position. The normally m(V)~16 star, USNO-A2.0 0450-03360039, which lies 3.5 from the X-ray position, was seen in our Magellan data to be very much enhanced in brightness. Our optical spectrum showed emission lines which identified the source as a nova in the auroral phase. Hence this optical source is undoubtedly the progenitor of the X-ray source - a new nova (now also known as V598 Pup). The X-ray spectrum indicates that the nova was in a super-soft state (with kT(eff)~35eV). We estimate the distance to the nova to be ~3kpc. Analysis of archival robotic optical survey data shows a rapid decline light curve consistent with that expected for a very fast nova. The XMM-Newton slew data present a powerful opportunity to find new X-ray transient objects while they are still bright. Here we present the first such source discovered by the analysis of near real-time slew data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا