ترغب بنشر مسار تعليمي؟ اضغط هنا

XMMSL1 J060636.2-694933: An XMM-Newton Slew discovery and Swift/Magellan follow up of a new Classical Nova in the LMC

123   0   0.0 ( 0 )
 نشر من قبل Dr. Andy Read
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to discover new X-ray transients, the data taken by XMM-Newton as it slews between targets are being processed and cross-correlated with other X-ray observations. A bright source, XMMSL1 J060636.2-694933, was detected on 18 July 2006 at a position where no previous X-ray source had been seen. The XMM-Newton slew data, plus follow-up dedicated XMM-Newton and Swift observations, plus optical data acquired with the Magellan Clay telescope, and archival All-Sky Automated Survey (ASAS) data were used to classify the new object, and to investigate its properties. No XMM-Newton slew X-ray counts are detected above 1 keV and the source is seen to be over five hundred times brighter than the ROSAT All-Sky Survey upper limit at that position. The line-rich optical spectrum acquired with the Magellan telescope allows the object to be classified as an Ao auroral phase nova, and the soft X-ray spectrum indicates that the nova was in a super-soft source state in the X-ray decline seen in the follow-up X-ray observations. The archival ASAS data suggests that the nova at onset (Oct 2005) was a very fast nova, and an estimate of its distance is consistent with the nova being situated within the LMC. With the discovery presented here of a new classical nova in the LMC, it is clear that XMM-Newton slew data are continuing to offer a powerful opportunity to find new X-ray transient objects.

قيم البحث

اقرأ أيضاً

161 - R.L.C. Starling 2010
We present deep Swift follow-up observations of a sample of 94 unidentified X-ray sources from the XMM-Newton Slew Survey. The X-ray Telescope on-board Swift detected 29% of the sample sources; the flux limits for undetected sources suggests the bulk of the Slew Survey sources are drawn from one or more transient populations. We report revised X-ray positions for the XRT-detected sources, with typical uncertainties of 2.9, reducing the number of catalogued optical matches to just a single source in most cases. We characterise the sources detected by Swift through their X-ray spectra and variability and via UVOT photometry and catalogued nIR, optical and radio observations. Six sources can be associated with known objects and 8 may be associated with unidentified ROSAT sources within the 3-sigma error radii of our revised X-ray positions. We find 10 of the 30 XRT-detected sources are clearly stellar in nature, including one periodic variable star and 2 high proper motion stars. For 11 sources we propose an AGN classification, among which 4 are detected with BAT and 3 have redshifts spanning z = 0.2 - 0.9 obtained from the literature or from optical spectroscopy presented here. The 67 Slew Survey sources we do not detect with Swift are studied via their characteristics in the Slew Survey and by comparison with the XRT and BAT detected population. We suggest that these are mostly if not all extragalactic, though unlikely to be highly absorbed sources in the X-rays such as Compton thick AGN. A large number of these are highly variable soft X-ray sources. A small fraction of mainly hard-band detections may be spurious. This follow-up programme brings us a step further to completing the identifications of a substantial sample of XMM-Newton Slew Survey sources, important for understanding the nature of the transient sky and allowing flux-limited samples to be constructed.
233 - A.M. Read 2008
In an attempt to catch new X-ray transients while they are still bright, the data taken by XMM-Newton as it slews between targets is being processed and cross-correlated with other X-ray observations as soon as the slew data appears in the XMM-Newton archive. A bright source, XMMSL1 J070542.7-381442, was detected on 9 Oct 2007 at a position where no previous X-ray source had been seen. The XMM slew data and optical data acquired with the Magellan Clay 6.5m telescope were used to classify the new object. No XMM slew X-ray counts are detected above 1keV and the source is seen to be ~750 times brighter than the ROSAT All-Sky Survey upper limit at that position. The normally m(V)~16 star, USNO-A2.0 0450-03360039, which lies 3.5 from the X-ray position, was seen in our Magellan data to be very much enhanced in brightness. Our optical spectrum showed emission lines which identified the source as a nova in the auroral phase. Hence this optical source is undoubtedly the progenitor of the X-ray source - a new nova (now also known as V598 Pup). The X-ray spectrum indicates that the nova was in a super-soft state (with kT(eff)~35eV). We estimate the distance to the nova to be ~3kpc. Analysis of archival robotic optical survey data shows a rapid decline light curve consistent with that expected for a very fast nova. The XMM-Newton slew data present a powerful opportunity to find new X-ray transient objects while they are still bright. Here we present the first such source discovered by the analysis of near real-time slew data.
125 - M. P. Esquej 2005
The XMM-Newton satellite is the most sensitive X-ray observatory flown to date due to the great collecting area of its mirrors coupled with the high quantum efficiency of the EPIC detectors. It performs slewing manoeuvers between observation targets tracking almost circular orbits through the ecliptic poles due to the Sun constraint. Slews are made with the EPIC cameras open and the other instruments closed, operating with the observing mode set to the one of the previous pointed observation and the medium filter in place. Slew observations from the EPIC-pn camera in FF, eFF and LW modes provide data, resulting in a maximum of 15 seconds of on-source time. These data can be used to give a uniform survey of the X-ray sky, at great sensitivity in the hard band compared with other X-ray all-sky surveys.
We examine four high resolution reflection grating spectrometers (RGS) spectra of the February 2009 outburst of the luminous recurrent nova LMC 2009a. They were very complex and rich in intricate absorption and emission features. The continuum was co nsistent with a dominant component originating in the atmosphere of a shell burning white dwarf (WD) with peak effective temperature between 810,000 K and a million K, and mass in the 1.2-1.4 M$_odot$ range. A moderate blue shift of the absorption features of a few hundred km s$^{-1}$ can be explained with a residual nova wind depleting the WD surface at a rate of about 10$^{-8}$ M$_odot$ yr$^{-1}$. The emission spectrum seems to be due to both photoionization and shock ionization in the ejecta. The supersoft X-ray flux was irregularly variable on time scales of hours, with decreasing amplitude of the variability. We find that both the period and the amplitude of another, already known 33.3 s modulation, varied within timescales of hours. We compared N LMC 2009a with other Magellanic Clouds novae, including 4 serendipitously discovered as supersoft X-ray sources (SSS) among 13 observed within 16 years after the eruption. The new detected targets were much less luminous than expected: we suggest that they were partially obscured by the accretion disk. Lack of SSS detections in the Magellanic Clouds novae more than 5.5 years after the eruption constrains the average duration of the nuclear burning phase.
121 - R. L. C. Starling 2017
We present optical spectroscopy of candidate AGN pinpointed by a Swift follow-up campaign on unidentified transients in the XMM-Newton Slew Survey, increasing the completeness of the identifications of AGN in the Survey. Our Swift follow-up campaign identified 17 XRT-detected candidate AGN, of which nine were selected for optical follow-up and a further two were confirmed as AGN elsewhere. Using data obtained at the William Herschel Telescope, Very Large Telescope and New Technology Telescope, we find AGN features in seven of the candidates. We classify six as Seyfert types 1.0 to 1.5, with broad-line region velocities spanning 2000--12000 km s$^{-1}$, and identify one as a possible Type II AGN, consistent with the lack of a soft band X-ray detection in the Slew Survey. The Virial black hole mass estimates for the sample lie between 1$times$10$^{8}$ M$_{odot}$ and 3$times$10$^9$ M$_{odot}$, with one source likely emitting close to its Eddington rate, $L_{rm Bol}/L_{rm Edd} sim 0.9$. We find a wide redshift range of $0.08<z<0.9$ for the nine now confirmed AGN drawn from the unidentified Slew Survey sample. One source remaining unclassified shows outbursts rarely seen before in AGN. We conclude that AGN discovered in this way are consistent with the largely non-varying, Slew-selected, known AGN population. We also find parallels with XMM-Newton Bright Serendipitous Survey AGN selected from pointed observations, and postulate that shallow X-ray surveys select AGN drawn from the same populations that have been characterised in deeper X-ray selected samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا