ترغب بنشر مسار تعليمي؟ اضغط هنا

Among heavy-fermion metals, Ce$_3$Pd$_{20}$Si$_6$ is one of the heaviest-electron systems known to date. Here we used high-resolution neutron spectroscopy to observe low-energy magnetic scattering from a single crystal of this compound in the paramag netic state. We investigated its temperature dependence and distribution in momentum space, which was not accessible in earlier measurements on polycrystalline samples. At low temperatures, a quasielastic magnetic response with a half-width {Gamma}=0.1 meV persists with varying intensity all over the Brillouin zone. It forms a broad hump centered at the (111) scattering vector, surrounded by minima of intensity at (002), (220) and equivalent wave vectors. The momentum-space structure distinguishes this signal from a simple crystal-field excitation at 0.31 meV, suggested previously, and rather lets us ascribe it to short-range dynamical correlations between the neighboring Ce ions, mediated by the itinerant heavy f-electrons via the RKKY mechanism. With increasing temperature, the energy width of the signal follows the conventional T$scriptstyle^{1/2}$ law, {Gamma}(T) = {Gamma}$_0$ + A*T$scriptstyle^{1/2}$. The momentum-space symmetry of the quasielastic response suggests that it stems from the simple-cubic Ce sublattice occupying the 8c Wyckoff site, whereas the crystallographically inequivalent 4a site remains magnetically silent in this material.
Using inelastic neutron scattering, we have observed a quasi-one-dimensional dispersive magnetic excitation in the frustrated triangular-lattice spin-2 chain oxide Ca3Co2O6. At the lowest temperature (T = 1.5 K), this magnon is characterized by a lar ge zone-center spin gap of ~27 meV, which we attribute to the large single-ion anisotropy, and disperses along the chain direction with a bandwidth of ~3.5 meV. In the directions orthogonal to the chains, no measurable dispersion was found. With increasing temperature, the magnon dispersion shifts towards lower energies, yet persists up to at least 150 K, indicating that the ferromagnetic intrachain correlations survive up to 6 times higher temperatures than the long-range interchain antiferromagnetic order. The magnon dispersion can be well described within the predictions of linear spin-wave theory for a system of weakly coupled ferromagnetic chains with large single-ion anisotropy, enabling the direct quantitative determination of the magnetic exchange and anisotropy parameters.
We investigate magnetic ordering in metallic Ba[Fe(1-x)Mn(x)](2)As(2) and discuss the unusual magnetic phase, which was recently discovered for Mn concentrations x > 10%. We argue that it can be understood as a Griffiths-type phase that forms above t he quantum critical point associated with the suppression of the stripe-antiferromagnetic spin-density-wave (SDW) order in BaFe2As2 by the randomly introduced localized Mn moments acting as strong magnetic impurities. While the SDW transition at x = 0, 2.5% and 5% remains equally sharp, in the x = 12% sample we observe an abrupt smearing of the antiferromagnetic transition in temperature and a considerable suppression of the spin gap in the magnetic excitation spectrum. According to our muon-spin-relaxation, nuclear magnetic resonance and neutron-scattering data, antiferromagnetically ordered rare regions start forming in the x = 12% sample significantly above the Neel temperature of the parent compound. Upon cooling, their volume grows continuously, leading to an increase in the magnetic Bragg intensity and to the gradual opening of a partial spin gap in the magnetic excitation spectrum. Using neutron Larmor diffraction, we also demonstrate that the magnetically ordered volume is characterized by a finite orthorhombic distortion, which could not be resolved in previous diffraction studies most probably due to its coexistence with the tetragonal phase and a microstrain-induced broadening of the Bragg reflections. We argue that Ba[Fe(1-x)Mn(x)](2)As(2) could represent an interesting model spin-glass system, in which localized magnetic moments are randomly embedded into a SDW metal with Fermi surface nesting.
83 - J. T. Park , G. Friemel , T. Loew 2012
We report results of inelastic-neutron-scattering measurements of low-energy spin-wave excitations in two structurally distinct families of iron-pnictide parent compounds: Na(1-{delta})FeAs and BaFe2As2. Despite their very different values of the ord ered magnetic moment and Neel temperatures, T_N, in the antiferromagnetic state both compounds exhibit similar spin gaps of the order of 10 meV at the magnetic Brillouin-zone center. The gap opens sharply below T_N, with no signatures of a precursor gap at temperatures between the orthorhombic and magnetic phase transitions in Na(1-{delta})FeAs. We also find a relatively weak dispersion of the spin-wave gap in BaFe2As2 along the out-of-plane momentum component, q_z. At the magnetic zone boundary (q_z = 0), spin excitations in the ordered state persist down to 20 meV, which implies a much smaller value of the effective out-of-plane exchange interaction, J_c, as compared to previous estimates based on fitting the high-energy spin-wave dispersion to a Heisenberg-type model.
Inelastic neutron scattering is employed to study the reciprocal-space structure and dispersion of magnetic excitations in the normal and superconducting states of single-crystalline Rb0.8Fe1.6Se2. We show that the recently discovered magnetic resona nt mode in this compound has a quasi-two-dimensional character, similar to overdoped iron-pnictide superconductors. Moreover, it has a rich in-plane structure that is dominated by four elliptical peaks, symmetrically surrounding the Brillouin zone corner, without sqrt(5) x sqrt(5) reconstruction. We also present evidence for the dispersion of the resonance peak, as its position in momentum space depends on energy. Comparison of our findings with the results of band structure calculations provides strong support for the itinerant origin of the observed signal. It can be traced back to the nesting of electron-like Fermi pockets in the doped metallic phase of the sample in the absence of iron-vacancy ordering.
Epitaxial niobium-nitride thin films with a critical temperature of Tc=16K and a thickness of 100nm were fabricated on MgO(100) substrates by pulsed laser deposition. Low-temperature magnetic force microscopy (MFM) images of the supercurrent vortices were measured after field cooling in a magnetic field of 3mT at various temperatures. Temperature dependence of the penetration depth has been evaluated by a two-dimensional fitting of the vortex profiles in the monopole-monopole model. Its subsequent fit to a single s-wave gap function results in the superconducting gap amplitude Delta(0) = 2.9 meV = 2.1*kB*Tc, in perfect agreement with previous reports. The pinning force has been independently estimated from local depinning of individual vortices by lateral forces exerted by the MFM tip and from transport measurements. A good quantitative agreement between the two techniques shows that for low fields, B << Hc2, MFM is a powerful and reliable technique to probe the local variations of the pinning landscape. We also demonstrate that the monopole model can be successfully applied even for thin films with a thickness comparable to the penetration depth.
We study the symmetry of spin excitation spectra in 122-ferropnictide superconductors by comparing the results of first-principles calculations with inelastic neutron scattering (INS) measurements on BaFe1.85Co0.15As2 and BaFe1.91Ni0.09As2 samples th at exhibit neither static magnetic phases nor structural phase transitions. In both the normal and superconducting (SC) states, the spectrum lacks the 42/m screw symmetry around the (1/2 1/2 L) axis that is implied by the I4/mmm space group. This is manifest both in the in-plane anisotropy of the normal- and SC-state spin dynamics and in the out-of-plane dispersion of the spin-resonance mode. We show that this effect originates from the higher symmetry of the magnetic Fe sublattice with respect to the crystal itself, hence the INS signal inherits the symmetry of the unfolded Brillouin zone (BZ) of the Fe sublattice. The in-plane anisotropy is temperature-independent and can be qualitatively reproduced in normal-state density-functional-theory calculations without invoking a symmetry-broken (nematic) ground state that was previously proposed as an explanation for this effect. Below the SC transition, the energy of the magnetic resonant mode Er, as well as its intensity and the SC spin gap inherit the normal-state intensity modulation along the out-of-plane direction L with a period twice larger than expected from the body-centered-tetragonal BZ symmetry. The amplitude of this modulation decreases at higher doping, providing an analogy to the splitting between even and odd resonant modes in bilayer cuprates. Combining our and previous data, we show that at odd L a universal linear relationship Er=4.3*kB*Tc holds for all studied Fe-based superconductors, independent of their carrier type. Its validity down to the lowest doping levels is consistent with weaker electron correlations in ferropnictides as compared to the underdoped cuprates.
We report superconducting (SC) properties of stoichiometric LiFeAs (Tc = 17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rock ing curves indicate better ordering than in chemically doped 122-compounds. The London penetration depth of 210 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters. Its temperature dependence is best described by a single isotropic SC gap of 3.0 meV, which agrees with the ARPES value of 3.1 meV and corresponds to the ratio 2Delta/kTc = 4.1, approaching the weak-coupling limit predicted by the BCS theory. This classifies LiFeAs as a weakly coupled single-gap superconductor, similar to conventional metals.
The disordered flux line lattice in single crystals of the slightly overdoped aFe_{2-x}Co_xAs_2 (x = 0.19, Tc = 23 K) superconductor is studied by magnetization measurements, small-angle neutron scattering (SANS), and magnetic force microscopy (MFM). In the whole range of magnetic fields up to 9 T, vortex pinning precludes the formation of an ordered Abrikosov lattice. Instead, a vitreous vortex phase (vortex glass) with a short-range hexagonal order is observed. Statistical processing of MFM datasets lets us directly measure its radial and angular distribution functions and extract the radial correlation length zeta. In contrast to predictions of the collective pinning model, no increase in the correlated volume with the applied field is observed. Instead, we find that zeta decreases as 1.3*R1 ~ H^(-1/2) over four decades of the applied magnetic field, where R1 is the radius of the first coordination shell of the vortex lattice. Such universal scaling of zeta implies that the vortex pinning in iron arsenides remains strong even in the absence of static magnetism. This result is consistent with all the real- and reciprocal-space vortex-lattice measurements in overdoped as-grown aFe_{2-x}Co_xAs_2 published to date and is thus sample-independent. The failure of the collective pinning model suggests that the vortices remain in the single-vortex pinning limit even in high magnetic fields up to 9 T.
We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additiona l broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا