ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry and disorder of the vitreous vortex lattice in an overdoped BaFe_{2-x}Co_xAs_2 superconductor: Indication for strong single-vortex pinning

205   0   0.0 ( 0 )
 نشر من قبل Dmytro Inosov S.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The disordered flux line lattice in single crystals of the slightly overdoped aFe_{2-x}Co_xAs_2 (x = 0.19, Tc = 23 K) superconductor is studied by magnetization measurements, small-angle neutron scattering (SANS), and magnetic force microscopy (MFM). In the whole range of magnetic fields up to 9 T, vortex pinning precludes the formation of an ordered Abrikosov lattice. Instead, a vitreous vortex phase (vortex glass) with a short-range hexagonal order is observed. Statistical processing of MFM datasets lets us directly measure its radial and angular distribution functions and extract the radial correlation length zeta. In contrast to predictions of the collective pinning model, no increase in the correlated volume with the applied field is observed. Instead, we find that zeta decreases as 1.3*R1 ~ H^(-1/2) over four decades of the applied magnetic field, where R1 is the radius of the first coordination shell of the vortex lattice. Such universal scaling of zeta implies that the vortex pinning in iron arsenides remains strong even in the absence of static magnetism. This result is consistent with all the real- and reciprocal-space vortex-lattice measurements in overdoped as-grown aFe_{2-x}Co_xAs_2 published to date and is thus sample-independent. The failure of the collective pinning model suggests that the vortices remain in the single-vortex pinning limit even in high magnetic fields up to 9 T.

قيم البحث

اقرأ أيضاً

78 - C. Tarantini , S. Lee , Y. Zhang 2010
We report measurements of the field and angular dependences of Jc of truly epitaxial Co-doped BaFe2As2 thin films grown on SrTiO3/(La,Sr)(Al,Ta)O3 with different SrTiO3 template thicknesses. The films show Jc comparable to Jc of single crystals and a maximum pinning force Fp(0.6Tc) > 5 GN/m3 at H/Hirr ~ 0.5 indicative of strong vortex pinning effective up to high fields. Due to the strong correlated c-axis pinning, Jc for field along the c-axis exceeds Jc for H//ab plane, inverting the expectation of the Hc2 anisotropy. HRTEM reveals that the strong vortex pinning is due to a high density of nanosize columnar defects.
The mechanism of the interplay between superconductivity and magnetism is one of the intriguing and challenging problems in physics. Theory has predicted that the ferromagnetic order can coexist with the superconducting order in the form of a spontan eous vortex phase in which magnetic vortices nucleate in the absence of an external field. However, there has been no rigorous demonstration of spontaneous vortices by bulk magnetic measurements. Here we show the results of experimental observations of spontaneous vortices using a superconductor/ferromagnet fractal nanocomposite, in which superconducting MgB2 and ferromagnetic nanograins are dispersedly embedded in the normal matrix to realize the remote electromagnetic interaction and also to induce a long-range Josephson coupling. We found from bulk magnetization measurements that the sample with nonzero remanent magnetization exhibits the magnetic behaviors which are fully consistent with a spontaneous vortex scenario predicted theoretically for magnetic inclusions in a superconducting material. The resulting spontaneous vortex state is in equilibrium and coexists surprisingly with a Meissner state (complete shielding of an external magnetic field). The present observation not only reveals the evolution process of the spontaneous vortices in superconductor/ferromagnet hybrids, but it also sheds light on the role of the fractal disorder and structural heterogeneity on the vortex nucleation under the influence of Josephson superconducting currents.
The pinning of quantized flux lines, or vortices, in the mixed state is used to quantify the effect of impurities in iron-based superconductors (IBS). Disorder at two length scales is relevant in these materials. Strong flux pinning resulting from nm -scale heterogeneity of the superconducting properties leads to the very disordered vortex ensembles observed in the IBS, and to the pronounced maximum in the critical current density jc at low magnetic fields. Disorder at the atomic scale, most likely induced by the dopant atoms, leads to weak collective pinning and a magnetic field-independent contribution jcoll. The latter allows one to estimate quasi-particle scattering rates.
We performed systematic AC susceptibility and magnetic moment measurements to investigate the vortex dynamics and pinning in the $EuRbFe_4As_4$ single crystal as a function of temperature, frequency, and DC magnetic field. The vortex solid-liquid lin e was determined and it fits well with $H(T_p)=H_0(1-t_p)^beta$ using $beta$=1.74-1.91, for $Hparallel ab$. It indicates a rather high pinning strength of the vortex system. The activation energy $U_0$ was determined from thermally activated flux creep theory and reached 6700 K at low fields, suggesting strong vortex pinning. A field dependence of $U_0(Hparallel ab)sim H^a$ with $a=0.47$ suggests thermally activated plastic pinning or caused by planar defects. Magnetic moment measurements also confirmed strong pinning in a $EuRbFe_4As_4$ superconductor and the superconducting response gives the main contribution to the $M(H)$ hysteresis. Additionally, we found evidence of long-range magnetic interactions in $Eu^{2+}$ sublattice and the FM-like nature of $Eu^{2+}$ atoms ordering.
Recent experimental results indicate that superconductivity in Sr2RuO4 is described by the p-wave E_u representation of the D_{4h} point group. Results on the vortex lattice structures for this representation are presented. The theoretical results are compared with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا