ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a general approach to describe slowly driven quantum systems both in real and imaginary time. We highlight many similarities, qualitative and quantitative, between real and imaginary time evolution. We discuss how the metric tensor and the Berry curvature can be extracted from both real and imaginary time simulations as a response of physical observables. For quenches ending at or near the quantum critical point, we show the utility of the scaling theory for detecting the location of the quantum critical point by comparing sweeps at different velocities. We briefly discuss the universal relaxation to equilibrium of systems after a quench. We finally review recent developments of quantum Monte Carlo methods for studying imaginary-time evolution. We illustrate our findings with explicit calculations using the transverse field Ising model in one dimension.
We discuss the application of the adiabatic perturbation theory to analyze the dynamics in various systems in the limit of slow parametric changes of the Hamiltonian. We first consider a two-level system and give an elementary derivation of the asymp totics of the transition probability when the tuning parameter slowly changes in the finite range. Then we apply this perturbation theory to many-particle systems with low energy spectrum characterized by quasiparticle excitations. Within this approach we derive the scaling of various quantities such as the density of generated defects, entropy and energy. We discuss the applications of this approach to a specific situation where the system crosses a quantum critical point. We also show the connection between adiabatic and sudden quenches near a quantum phase transitions and discuss the effects of quasiparticle statistics on slow and sudden quenches at finite temperatures.
We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter $lambda(t)$ changes in time as $lambda(t)sim up silon t^r$, based on the adiabatic expansion of the excitation probability in powers of $upsilon$. We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility $chi_{2r+2}(lambda)$, which for sudden quenches ($r=0$) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.
We study the dynamical response of a system to a sudden change of the tuning parameter $lambda$ starting (or ending) at the quantum critical point. In particular we analyze the scaling of the excitation probability, number of excited quasiparticles, heat and entropy with the quench amplitude and the system size. We extend the analysis to quenches with arbitrary power law dependence on time of the tuning parameter, showing a close connection between the scaling behavior of these quantities with the singularities of the adiabatic susceptibilities of order $m$ at the quantum critical point, where $m$ is related to the power of the quench. Precisely for sudden quenches the relevant susceptibility of the second order coincides with the fidelity susceptibility. We discuss the generalization of the scaling laws to the finite temperature quenches and show that the statistics of the low-energy excitations becomes important. We illustrate the relevance of those results for cold atoms experiments.
We discuss two complementary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law sc alings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا