ترغب بنشر مسار تعليمي؟ اضغط هنا

Quench dynamics near a quantum critical point: application to the sine-Gordon model

441   0   0.0 ( 0 )
 نشر من قبل Claudia De Grandi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter $lambda(t)$ changes in time as $lambda(t)sim upsilon t^r$, based on the adiabatic expansion of the excitation probability in powers of $upsilon$. We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility $chi_{2r+2}(lambda)$, which for sudden quenches ($r=0$) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.



قيم البحث

اقرأ أيضاً

We study the dynamical response of a system to a sudden change of the tuning parameter $lambda$ starting (or ending) at the quantum critical point. In particular we analyze the scaling of the excitation probability, number of excited quasiparticles, heat and entropy with the quench amplitude and the system size. We extend the analysis to quenches with arbitrary power law dependence on time of the tuning parameter, showing a close connection between the scaling behavior of these quantities with the singularities of the adiabatic susceptibilities of order $m$ at the quantum critical point, where $m$ is related to the power of the quench. Precisely for sudden quenches the relevant susceptibility of the second order coincides with the fidelity susceptibility. We discuss the generalization of the scaling laws to the finite temperature quenches and show that the statistics of the low-energy excitations becomes important. We illustrate the relevance of those results for cold atoms experiments.
149 - D. X. Horvath , G. Takacs 2017
We present a numerical computation of overlaps in mass quenches in sine-Gordon quantum field theory using truncated conformal space approach (TCSA). To improve the cut-off dependence of the method, we use a novel running coupling definition which has a general applicability in free boson TCSA. The numerical results are used to confirm the validity of a previously proposed analytical Ansatz for the initial state in the sinh-Gordon quench.
In this note, we study the hyperbolic stochastic damped sine-Gordon equation (SdSG), with a parameter $beta^2 > 0$, and its associated Gibbs dynamics on the two-dimensional torus. After introducing a suitable renormalization, we first construct the G ibbs measure in the range $0<beta^2<4pi$ via the variational approach due to Barashkov-Gubinelli (2018). We then prove almost sure global well-posedness and invariance of the Gibbs measure under the hyperbolic SdSG dynamics in the range $0<beta^2<2pi$. Our construction of the Gibbs measure also yields almost sure global well-posedness and invariance of the Gibbs measure for the parabolic sine-Gordon model in the range $0<beta^2<4pi$.
We consider a parabolic sine-Gordon model with periodic boundary conditions. We prove a fundamental maximum principle which gives a priori uniform control of the solution. In the one-dimensional case we classify all bounded steady states and exhibit some explicit solutions. For the numerical discretization we employ first order IMEX, and second order BDF2 discretization without any additional stabilization term. We rigorously prove the energy stability of the numerical schemes under nearly sharp and quite mild time step constraints. We demonstrate the striking similarity of the parabolic sine-Gordon model with the standard Allen-Cahn equations with double well potentials.
The standard phase-ordering process is obtained by quenching a system, like the Ising model, to below the critical point. This is usually done with periodic boundary conditions to insure ergodicity breaking in the low temperature phase. With this arr angement the infinite system is known to remain permanently out of equilibrium, i.e. there exists a well defined asymptotic state which is time-invariant but different from the ordered ferromagnetic state. In this paper we establish the critical nature of this invariant state, by demonstrating numerically that the quench dynamics with periodic and antiperiodic boundary conditions are indistinguishable one from the other. However while the asymptotic state does not coincide with the equilibrium state for the periodic case, it coincides instead with the equilibrium state of the antiperiodic case, which in fact is critical. The specific example of the Ising model is shown to be one instance of a more general phenomenon, since an analogous picture emerges in the spherical model, where boundary conditions are kept fixed to periodic, while the breaking or preserving of ergodicity is managed by imposing the spherical constraint either sharply or smoothly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا