ترغب بنشر مسار تعليمي؟ اضغط هنا

We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock with bosonic 88Sr. The lattice clock is referenced to the highly forbidden transition 1S0 - 3P0 at 698 nm, which becomes weakly allo wed due to state mixing in a homogeneous magnetic field. We were able to quantify three decoherence coefficients, which are due to dephasing collisions, inelastic collisions between atoms in the upper and lower clock state, and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with 88Sr shows no degradation due to collisions on the relative accuracy level of 10-16.
We present precision measurements with MHz uncertainty of the energy gap between asymptotic and well bound levels in the electronic ground state X $^1Sigma_{mathrm{g}}^+$ of the $^{39}$K$_2$ molecule. The molecules are prepared in a highly collimated particle beam and are interrogated in a $Lambda$-type excitation scheme of optical transitions to long range levels close to the asymptote of the ground state, using the electronically excited state A $^1Sigma^+_{rm u}$ as intermediate one. The transition frequencies are measured either by comparison with I$_2$ lines or by absolute measurements using a fs-frequency comb. The determined level energies were used together with Feshbach resonances from cold collisions of $^{39}$K and $^{40}$K reported from other authors to fit new ground state potentials. Precise scattering lengths are determined and tests of the validity of the Born-Oppenheimer approximation for the description of cold collisions at this level of precision are performed.
134 - O. Bucicov , M. Nowak , S. Jung 2007
We produce SO_2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO_2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages a re necessary to bring SO_2 to a complete standstill, significantly more than in other experiments. We show that in such a decelerator possible loss due to coupling between the motional degrees of freedom must be considered. Experimental results are compared with 3D Monte-Carlo simulations and the quantum state selectivity of the Stark decelerator is demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا