ﻻ يوجد ملخص باللغة العربية
We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock with bosonic 88Sr. The lattice clock is referenced to the highly forbidden transition 1S0 - 3P0 at 698 nm, which becomes weakly allowed due to state mixing in a homogeneous magnetic field. We were able to quantify three decoherence coefficients, which are due to dephasing collisions, inelastic collisions between atoms in the upper and lower clock state, and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with 88Sr shows no degradation due to collisions on the relative accuracy level of 10-16.
We analyze both the s- and p-wave collision induced frequency shifts and propose a over-$pi$ pulse scheme to cancel the shifts in optical lattice clocks interrogated by a Rabi pulse. The collisional frequency shifts are analytically solved as a funct
Collisions with background gas particles can shift the resonance frequencies of atoms in atomic clocks. The internal quantum states of atoms can also become entangled with their motional states due to the recoil imparted by a collision, which leads t
We develop a model to describe the motional (i.e., external degree of freedom) energy spectra of atoms trapped in a one-dimensional optical lattice, taking into account both axial and radial confinement relative to the lattice axis. Our model respect
Collisions between background gas particles and the trapped ion in an atomic clock can subtly shift the frequency of the clock transition. The uncertainty in the correction for this effect makes a significant contribution to the total systematic unce
Progress in realizing the SI second had multiple technological impacts and enabled to further constraint theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a rela