ﻻ يوجد ملخص باللغة العربية
We produce SO_2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO_2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages are necessary to bring SO_2 to a complete standstill, significantly more than in other experiments. We show that in such a decelerator possible loss due to coupling between the motional degrees of freedom must be considered. Experimental results are compared with 3D Monte-Carlo simulations and the quantum state selectivity of the Stark decelerator is demonstrated.
Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of
We report on the electrostatic trapping of neutral SrF molecules. The molecules are captured from a cryogenic buffer-gas beam source into the moving traps of a 4.5 m long traveling-wave Stark decelerator. The SrF molecules in $X^2Sigma^+(v=0, N=1)$ s
We examine the prospects for utilizing the optical bichromatic force (BCF) to greatly enhance laser deceleration and cooling for near-cycling transitions in small molecules. We discuss the expected behavior of the BCF in near-cycling transitions with
We report on the Stark deceleration of a pulsed molecular beam of NO radicals. Stark deceleration of this chemically important species has long been considered unfeasible due to its small electric dipole moment of 0.16 D. We prepared the NO radicals
A new type of decelerator is presented where polar neutral molecules are guided and decelerated using the principle of traveling electric potential wells, such that molecules are confined in stable three-dimensional traps throughout. This new deceler