ترغب بنشر مسار تعليمي؟ اضغط هنا

We deal with the reversible dynamics of coupled quantum and classical systems. Based on a recent proposal by the authors, we exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics in which both the quantum density matrix and the classical Liouville distribution retain their initial positive sign. In this way, the evolution allows identifying a classical and a quantum state in interaction at all times. After combining Koopmans Hilbert-space method in classical mechanics with van Hoves unitary representations in prequantum theory, the closure model is made available by the variational structure underlying a suitable wavefunction factorization. Also, we use Poisson reduction by symmetry to show that the hybrid model possesses a noncanonical Poisson structure that does not seem to have appeared before. As an example, this structure is specialized to the case of quantum two-level systems.
219 - Cesare Tronci , Ilon Joseph 2021
Motivated by recent discussions on the possible role of quantum computation in plasma simulations, here we present different approaches to Koopmans Hilbert-space formulation of classical mechanics in the context of Vlasov-Maxwell kinetic theory. The celebrated Koopman-von Neumann construction is provided with two different Hamiltonian structures: one is canonical and recovers the usual Clebsch representation of the Vlasov density, the other is noncanonical and appears to overcome certain issues emerging in the canonical formalism. Furthermore, the canonical structure is restored for a variant of the Koopman-von Neumann construction that carries a different phase dynamics. Going back to van Hoves prequantum theory, the corresponding Koopman-van Hove equation provides an alternative Clebsch representation which is then coupled to the electromagnetic fields. Finally, the role of gauge transformations in the new context is discussed in detail.
Based on Koopmans theory of classical wavefunctions in phase space, we present the Koopman-van Hove (KvH) formulation of classical mechanics as well as some of its properties. In particular, we show how the associated classical Liouville density aris es as a momentum map associated to the unitary action of strict contact transformations on classical wavefunctions. Upon applying the Madelung transform from quantum hydrodynamics in the new context, we show how the Koopman wavefunction picture is insufficient to reproduce arbitrary classical distributions. However, this problem is entirely overcome by resorting to von Neumann operators. Indeed, we show that the latter also allow for singular $delta-$like profiles of the Liouville density, thereby reproducing point particles in phase space.
Based on the Koopman-van Hove (KvH) formulation of classical mechanics introduced in Part I, we formulate a Hamiltonian model for hybrid quantum-classical systems. This is obtained by writing the KvH wave equation for two classical particles and appl ying canonical quantization to one of them. We illustrate several geometric properties of the model regarding the associated quantum, classical, and hybrid densities. After presenting the quantum-classical Madelung transform, the joint quantum-classical distribution is shown to arise as a momentum map for a unitary action naturally induced from the van Hove representation on the hybrid Hilbert space. While the quantum density matrix is positive by construction, no such result is currently available for the classical density. However, here we present a class of hybrid Hamiltonians whose flow preserves the sign of the classical density. Finally, we provide a simple closure model based on momentum map structures.
While the treatment of conical intersections in molecular dynamics generally requires nonadiabatic approaches, the Born-Oppenheimer adiabatic approximation is still adopted as a valid alternative in certain circumstances. In the context of Mead-Truhl ar minimal coupling, this paper presents a new closure of the nuclear Born-Oppenheimer equation, thereby leading to a molecular dynamics scheme capturing geometric phase effects. Specifically, a semiclassical closure of the nuclear Ehrenfest dynamics is obtained through a convenient prescription for the nuclear Bohmian trajectories. The conical intersections are suitably regularized in the resulting nuclear particle motion and the associated Lorentz force involves a smoothened Berry curvature identifying a loop-dependent geometric phase. In turn, this geometric phase rapidly reaches the usual topological index as the loop expands away from the original singularity. This feature reproduces the phenomenology appearing in recent exact nonadiabatic studies, as shown explicitly in the Jahn-Teller problem for linear vibronic coupling. Likewise, a newly proposed regularization of the diagonal correction term is also shown to reproduce quite faithfully the energy surface presented in recent nonadiabatic studies.
In this paper we consider a new geometric approach to Madelungs quantum hydrodynamics (QHD) based on the theory of gauge connections. Unlike previous approaches, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zer o holonomy. In the hydrodynamic context, this leads to a fluid velocity which no longer is constrained to be irrotational and allows instead for vortex filaments solutions. After exploiting the Rasetti-Regge method to couple the Schrodinger equation to vortex filament dynamics, the latter is then considered as a source of geometric phase in the context of Born-Oppenheimer molecular dynamics. Similarly, we consider the Pauli equation for the motion of spin particles in electromagnetic fields and we exploit its underlying hydrodynamic picture to include vortex dynamics.
170 - Cesare Tronci 2019
After reviewing the variational approach to splitting mean flow and fluctuation kinetics in the standard Vlasov theory, the same method is applied to the drift-kinetic equation from Littlejohns theory of guiding-center motion. This process sheds a ne w light on drift-ordered fluid (drift-fluid) models, whose anisotropic pressure tensor is then considered in detail. In addition, current drift-fluid models are completed by the insertion of magnetization terms ensuring momentum conservation. Magnetization currents are also shown to lead to challenging aspects when drift-fluid models are coupled to Maxwells equations for the evolution of the electromagnetic field. In order to overcome these difficulties, a simplified guiding-center theory is proposed along with its possible applications to hybrid kinetic-fluid models.
This paper extends the Madelung-Bohm formulation of quantum mechanics to describe the time-reversible interaction of classical and quantum systems. The symplectic geometry of the Madelung transform leads to identifying hybrid classical-quantum Lagran gian paths extending the Bohmian trajectories from standard quantum theory. As the classical symplectic form is no longer preserved, the nontrivial evolution of the Poincare integral is presented explicitly. Nevertheless, the classical phase-space components of the hybrid Bohmian trajectory identify a Hamiltonian flow parameterized by the quantum coordinate and this flow is associated to the motion of the classical subsystem. In addition, the continuity equation of the joint classical-quantum density is presented explicitly. While the von Neumann density operator of the quantum subsystem is always positive-definite by construction, the hybrid density is generally allowed to be unsigned. However, the paper concludes by presenting an infinite family of hybrid Hamiltonians whose corresponding evolution preserves the sign of the probability density for the classical subsystem.
318 - Cesare Tronci 2018
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Ber ry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmanns density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.
Upon revisiting the Hamiltonian structure of classical wavefunctions in Koopman-von Neumann theory, this paper addresses the long-standing problem of formulating a dynamical theory of classical-quantum coupling. The proposed model not only describes the influence of a classical system onto a quantum one, but also the reverse effect -- the quantum backreaction. These interactions are described by a new Hamiltonian wave equation overcoming shortcomings of currently employed models. For example, the density matrix of the quantum subsystem is always positive-definite. While the Liouville density of the classical subsystem is generally allowed to be unsigned, its sign is shown to be preserved in time for a specific infinite family of hybrid classical-quantum systems. The proposed description is illustrated and compared with previous theories using the exactly solvable model of a degenerate two-level quantum system coupled to a classical harmonic oscillator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا