ﻻ يوجد ملخص باللغة العربية
In this paper we consider a new geometric approach to Madelungs quantum hydrodynamics (QHD) based on the theory of gauge connections. Unlike previous approaches, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zero holonomy. In the hydrodynamic context, this leads to a fluid velocity which no longer is constrained to be irrotational and allows instead for vortex filaments solutions. After exploiting the Rasetti-Regge method to couple the Schrodinger equation to vortex filament dynamics, the latter is then considered as a source of geometric phase in the context of Born-Oppenheimer molecular dynamics. Similarly, we consider the Pauli equation for the motion of spin particles in electromagnetic fields and we exploit its underlying hydrodynamic picture to include vortex dynamics.
This thesis investigates geometric approaches to quantum hydrodynamics (QHD) in order to develop applications in theoretical quantum chemistry. Based upon the momentum map geometric structure of QHD and the associated Lie-Poisson and Euler-Poincare
The Hamiltonian action of a Lie group on a symplectic manifold induces a momentum map generalizing Noethers conserved quantity occurring in the case of a symmetry group. Then, when a Hamiltonian function can be written in terms of this momentum map,
Whereas it is easy to reduce the translational symmetry of a molecular system by using, e.g., Jacobi coordinates the situation is much more involved for the rotational symmetry. In this paper we address the latter problem using {it holonomy reduction
Based on Koopmans theory of classical wavefunctions in phase space, we present the Koopman-van Hove (KvH) formulation of classical mechanics as well as some of its properties. In particular, we show how the associated classical Liouville density aris
Based on the Koopman-van Hove (KvH) formulation of classical mechanics introduced in Part I, we formulate a Hamiltonian model for hybrid quantum-classical systems. This is obtained by writing the KvH wave equation for two classical particles and appl