ترغب بنشر مسار تعليمي؟ اضغط هنا

We revisit Mandels notion that the degree of coherence equals the degree of indistinguishability by performing Hong-Ou-Mandel- (HOM-)type interferometry with single photons elastically scattered by a cw resonantly driven excitonic transition of an In As/GaAs epitaxial quantum dot. We present a comprehensive study of the temporal profile of the photon coalescence phenomenon which shows that photon indistinguishability can be tuned by the excitation laser source, in the same way as their coherence time. A new figure of merit, the coalescence time window, is introduced to quantify the delay below which two photons are indistinguishable. This criterion sheds new light on the interpretation of HOM experiments under cw excitation, particularly when photon coherence times are longer than the temporal resolution of the detectors. The photon indistinguishability is extended over unprecedented time scales beyond the detectors response time, thus opening new perspectives to conducting quantum optics with single photons and conventional detectors.
We investigate experimentally and theoretically the resonant emission of single InAs/GaAs quantum dots in a planar microcavity. Due to the presence of at least one residual charge in the quantum dots, the resonant excitation of the neutral exciton is blocked. The influence of the residual doping on the initial quantum dots charge state is analyzed, and the resonant emission quenching is interpreted as a Coulomb blockade effect. The use of an additional non-resonant laser in a specific low power regime leads to the carrier draining in quantum dots and allows an efficient optical gating of the exciton resonant emission. A detailed population evolution model, developed to describe the carrier draining and the optical gate effect, perfectly fits the experimental results in the steady state and dynamical regimes of the optical gate with a single set of parameters. We deduce that ultra-slow Auger- and phonon-assisted capture processes govern the carrier draining in quantum dots with relaxation times in the 1 - 100 microsecond range. We conclude that the optical gate acts as a very sensitive probe of the quantum dots population relaxation in an unprecedented slow-capture regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا