ﻻ يوجد ملخص باللغة العربية
We revisit Mandels notion that the degree of coherence equals the degree of indistinguishability by performing Hong-Ou-Mandel- (HOM-)type interferometry with single photons elastically scattered by a cw resonantly driven excitonic transition of an InAs/GaAs epitaxial quantum dot. We present a comprehensive study of the temporal profile of the photon coalescence phenomenon which shows that photon indistinguishability can be tuned by the excitation laser source, in the same way as their coherence time. A new figure of merit, the coalescence time window, is introduced to quantify the delay below which two photons are indistinguishable. This criterion sheds new light on the interpretation of HOM experiments under cw excitation, particularly when photon coherence times are longer than the temporal resolution of the detectors. The photon indistinguishability is extended over unprecedented time scales beyond the detectors response time, thus opening new perspectives to conducting quantum optics with single photons and conventional detectors.
The light emission rate of a single quantum dot can be drastically enhanced by embedding it in a resonant semiconductor microcavity. This phenomenon is known as the Purcell effect, and the coupling strength between emitter and cavity can be quantifie
We investigate the temperature dependence of photon coherence properties through two photon interference (TPI) measurements from a single QD under resonant excitation. We show that the loss of indistinguishability is only related to the electron-phon
We describe how complex fluctuations of the local environment of an optically active quantum dot can leave rich fingerprints in its emission spectrum. A new feature, termed Fluctuation Induced Luminescence (FIL), is observed to arise from extremely r
We use temporally resolved intensity cross-correlation measurements to identify the biexciton-exciton radiative cascades in a negatively charged QD. The polarization sensitive correlation measurements show unambiguously that the excited two electron
A semiconductor quantum dot can generate highly coherent and indistinguishable single photons. However, intrinsic semiconductor dephasing mechanisms can reduce the visibility of two-photon interference. For an electron in a quantum dot, a fundamental