ترغب بنشر مسار تعليمي؟ اضغط هنا

Photo-draining and slow capture of carriers in quantum dots probed by resonant excitation spectroscopy

107   0   0.0 ( 0 )
 نشر من قبل Carole Diederichs
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate experimentally and theoretically the resonant emission of single InAs/GaAs quantum dots in a planar microcavity. Due to the presence of at least one residual charge in the quantum dots, the resonant excitation of the neutral exciton is blocked. The influence of the residual doping on the initial quantum dots charge state is analyzed, and the resonant emission quenching is interpreted as a Coulomb blockade effect. The use of an additional non-resonant laser in a specific low power regime leads to the carrier draining in quantum dots and allows an efficient optical gating of the exciton resonant emission. A detailed population evolution model, developed to describe the carrier draining and the optical gate effect, perfectly fits the experimental results in the steady state and dynamical regimes of the optical gate with a single set of parameters. We deduce that ultra-slow Auger- and phonon-assisted capture processes govern the carrier draining in quantum dots with relaxation times in the 1 - 100 microsecond range. We conclude that the optical gate acts as a very sensitive probe of the quantum dots population relaxation in an unprecedented slow-capture regime.

قيم البحث

اقرأ أيضاً

Rydberg excitons are, with their ultrastrong mutual interactions, giant optical nonlinearities, and very high sensitivity to external fields, promising for applications in quantum sensing and nonlinear optics at the single-photon level. To design qua ntum applications it is necessary to know how Rydberg excitons and other excited states relax to lower-lying exciton states. Here, we present photoluminescence excitation spectroscopy as a method to probe transition probabilities from various excitonic states in cuprous oxide, and we show giant Rydberg excitons at $T=38$ mK with principal quantum numbers up to $n=30$, corresponding to a calculated diameter of 3 $mu$m.
We investigate the charging dynamics in epitaxially grown InAs quantum dots under resonant excitation with and without additional low-power above-band excitation. Time-resolved resonance fluorescence from a charged exciton (trion) transition is recor ded as the above-band excitation is modulated on and off. The fluorescence intensity varies as the QD changes from charged to neutral and back due to the influence of the above-band excitation. We fit the transients of the time-resolved resonance fluorescence with models that represent the charging and neutralization processes. The time dependence of the transients indicate that Auger recombination of resonantly excited trions is largely responsible for neutralization of the charged state when the above-band excitation is off. The addition of above-band excitation revives the resonance fluorescence signal from the trion transition. We conclude that the above-band laser excites charges that relax into the bound state of the quantum dot via two different charge transport processes. The captured charges return the QD to its initial charge state and allow resonant excitation of the trion transition. The time dependence of one charge transport process is consistent with ballistic transport of charge carriers excited non-local to the QD via above-band excitation. We attribute the second charge transport process to carrier migration through a stochastic collection of weakly-binding sites, resulting in sub-diffusion-like dynamics.
We present a study on the intersublevel spacings of electrons and holes in a single layer of InAs self-assembled quantum dots (SAQDs) using Fourier transform infrared (FTIR) transmission spectroscopy without the application of an external magnetic fi eld. Epitaxial, complementary-doped and semi-transparent electrostatic gates are grown within the ultra high vacuum conditions of molecular beam epitaxy to voltage-tune the device, while a two dimensional electron gas (2DEG) serves as back contact. Spacings of the hole sublevels are indirectly calculated using the photoluminescence spectroscopy along with FTIR spectroscopy. The observed spacings fit well to the calculated values for both electrons and holes. Additionally, the intersubband resonances of the 2DEG are enhanced due to the QD layer on top of the device.
Design, epitaxial growth, and resonant spectroscopy of CdSe Quantum Dots (QDs) embedded in an innovative (Zn,Cd)Se barrier are presented. The (Zn,Cd)Se barrier enables shifting of QDs energy emission down to 1.87 eV, that is below the energy of Mn$^{ 2+}$ ions internal transition (2.1 eV). This opens a perspective for implementation of epitaxial CdSe QDs doped with several Mn ions as, e. g., the light sources in high quantum yield magnetooptical devices. Polarization resolved Photoluminescence Excitation measurements of individual QDs reveal sharp ($Gamma <$ 150 $mu$eV) maxima and transfer of optical polarization to QD confining charged exciton state with efficiency attaining 26 %. The QD doping with single Mn$^{2+}$ ions is achieved.
We present a first comprehensive study on deterministic spin preparation employing excited state resonances of droplet etched GaAs quantum dots. This achievement facilitates future investigations of spin qubit based quantum memories using the GaAs qu antum dot material platform. By observation of excitation spectra for a range of fundamental excitonic transitions the properties of different quantum dot energy levels, i.e. shells, are revealed. The innovative use of polarization resolved excitation and detection in quasi-resonant excitation spectroscopy facilitates determination of $85$ $%$ maximum spin preparation fidelity - irrespective of the relative orientations of lab and quantum dot polarization eigenbases. Additionally, the characteristic non-radiative decay time is investigated as a function of ground state, excitation resonance and excitation power level, yielding decay times as low as $29$ ps for s-p-shell exited state transitions. Finally, by time resolved correlation spectroscopy it is demonstrated that the employed excitation scheme has a significant impact on the electronic environment of quantum dot transitions thereby influencing its charge and coherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا