ترغب بنشر مسار تعليمي؟ اضغط هنا

The symmetries associated with discrete-time quantum walks (DTQWs) and the flexibilities in controlling their dynamical parameters allow to create a large number of topological phases. An interface in position space, which separates two regions with different topological numbers, can, for example, be effectively modelled using different coin parameters for the walk on either side of the interface. Depending on the neighbouring numbers, this can lead to localized states in one-dimensional configurations and here we carry out a detailed study into the strength of such localized states. We show that it can be related to the amount of entanglement created by the walks, with minima appearing for strong localizations. This feature also persists in the presence of small amounts of $sigma_x$ (bit flip) noise.
Photons in optical networks can be used in multi-path interferometry and various quantum information processing and communication protocols. Large networks, however, are often not free from defects, which can appear randomly between the lattice sites and are caused either by production faults or deliberate introduction. In this work we present numerical simulations of the behaviour of a single photon injected into a regular lattice of beam-splitting components in the presence of defects that cause perfect backward reflections. We find that the photon dynamics is quickly dominated by the backscattering processes, and a small fraction of reflectors in the paths of the beam-splitting array strongly affects the percolation probability of the photon. We carefully examine such systems and show an interesting interplay between the probabilities of percolation, backscattering and temporary localization. We also discuss the sensitivity of these probabilities to lattice size, timescale, injection point, fraction of reflectors and boundary conditions.
167 - C. M. Chandrashekar 2013
From the unitary operator used for implementing two-state discrete-time quantum walk on one-, two- and three- dimensional lattice we obtain a two-component Dirac-like Hamiltonian. In particular, using different pairs of Pauli basis as position transl ation states we obtain three different form of Hamiltonians for evolution on one-dimensional lattice. We extend this to two- and three-dimensional lattices using different Pauli basis states as position translation states for each dimension and show that the external coin operation, which is necessary for one-dimensional walk is not a necessary requirement for a walk on higher dimensions but can serve as an additional resource to control the dynamics. The two-component Hamiltonian we present here for quantum walk on different lattices can serve as a general framework to simulate, control, and study the dynamics of quantum systems governed by Dirac-like Hamiltonian.
While completely self-avoiding quantum walks have the distinct property of leading to a trivial unidirectional transport of a quantum state, an interesting and non-trivial dynamics can be constructed by restricting the self-avoidance to a subspace of the complete Hilbert space. Here, we present a comprehensive study of three two-dimensional quantum walks, which are self-avoiding in coin space, in position space and in both, coin and position space. We discuss the properties of these walks and show that all result in delocalisation of the probability distribution for initial states which are strongly localised for a walk with a standard Grover coin operation. We also present analytical results for the evolution in the form of limit distributions for the self-avoiding walks in coin space and in both, coin and position space.
We show that a quantum walk process can be used to construct and secure quantum memory. More precisely, we show that a localized quantum walk with temporal disorder can be engineered to store the information of a single, unknown qubit on a compact po sition space and faithfully recover it on demand. Since the localization occurss with a finite spread in position space, the stored information of the qubit will be naturally secured from the simple eavesdropper. Our protocol can be adopted to any quantum system for which experimental control over quantum walk dynamics can be achieved.
Quantum percolation describes the problem of a quantum particle moving through a disordered system. While certain similarities to classical percolation exist, the quantum case has additional complexity due to the possibility of Anderson localisation. Here, we consider a directed discrete-time quantum walk as a model to study quantum percolation of a two-state particle on a two-dimensional lattice. Using numerical analysis we determine the fraction of connected edges required (transition point) in the lattice for the two-state particle to percolate with finite (non-zero) probability for three fundamental lattice geometries, finite square lattice, honeycomb lattice, and nanotube structure and show that it tends towards unity for increasing lattice sizes. To support the numerical results we also use a continuum approximation to analytically derive the expression for the percolation probability for the case of the square lattice and show that it agrees with the numerically obtained results for the discrete case. Beyond the fundamental interest to understand the dynamics of a two-state particle on a lattice (network) with disconnected vertices, our study has the potential to shed light on the transport dynamics in various quantum condensed matter systems and the construction of quantum information processing and communication protocols.
196 - C. M. Chandrashekar 2012
The time evolution of one- and two-dimensional discrete-time quantum walk with increase in disorder is studied. We use spatial, temporal and spatio-temporal broken periodicity of the unitary evolution as disorder to mimic the effect of disordered/ran dom medium in our study. Disorder induces a dramatic change in the interference pattern leading to localization of the quantum walks in one- and two-dimensions. Spatial disorder results in the decreases of the particle and position entanglement in one-dimension and counter intuitively, an enhancement in entanglement with temporal and spatio-temporal disorder is seen. The study signifies that the Anderson localization of quantum state without compromising on the degree of entanglement could be implement in a large variety of physical settings where quantum walks has been realized. The study presented here could make it feasible to explore, theoretically and experimentally the interplay between disorder and entanglement. This also brings up a variety of intriguing questions relating to the negative and positive implications on algorithmic and other applications.
We study the effect of noise on the transport of a quantum state from a closed loop of $n-$sites with one of the sites as a sink. Using a discrete-time quantum walk dynamics, we demonstrate that the transport efficiency can be enhanced with noise whe n the number of sites in the loop is small and reduced when the number of sites in the loop grows. By using the concept of measurement induced disturbance we identify the regimes in which genuine quantum effects are responsible for the enhanced transport.
Geometric phase plays an important role in evolution of pure or mixed quantum states. However, when a system undergoes decoherence the development of geometric phase may be inhibited. Here, we show that when a quantum system interacts with two compet ing environments there can be enhancement of geometric phase. This effect is akin to Parrondo like effect on the geometric phase which results from quantum frustration of decoherence. Our result suggests that the mechanism of two competing decoherence can be useful in fault-tolerant holonomic quantum computation.
We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position de gree of freedom and between the two spatial ($x-y$) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا