ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-component Dirac-like Hamiltonian for generating quantum walk on one-, two- and three-dimensional lattices

198   0   0.0 ( 0 )
 نشر من قبل C. M. Chandrashekar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From the unitary operator used for implementing two-state discrete-time quantum walk on one-, two- and three- dimensional lattice we obtain a two-component Dirac-like Hamiltonian. In particular, using different pairs of Pauli basis as position translation states we obtain three different form of Hamiltonians for evolution on one-dimensional lattice. We extend this to two- and three-dimensional lattices using different Pauli basis states as position translation states for each dimension and show that the external coin operation, which is necessary for one-dimensional walk is not a necessary requirement for a walk on higher dimensions but can serve as an additional resource to control the dynamics. The two-component Hamiltonian we present here for quantum walk on different lattices can serve as a general framework to simulate, control, and study the dynamics of quantum systems governed by Dirac-like Hamiltonian.



قيم البحث

اقرأ أيضاً

We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position de gree of freedom and between the two spatial ($x-y$) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.
Quantum walks in an elaborately designed graph, is a powerful tool simulating physical and topological phenomena, constructing analog quantum algorithms and realizing universal quantum computing. Integrated photonics technology has emerged as a versa tile platform to implement various quantum information tasks and a promising candidate to perform large-scale quantum walks. Both extending physical dimensions and involving more particles will increase the complexity of the evolving systems and the desired quantum resources. Pioneer works have demonstrated single particle walking on two-dimensional (2D) lattices and multiple walkers interfering on a one-dimensional structure. However, 2D multi-particle quantum walk, genuinely being not classically simulatable, has been a vacancy for nearly ten years. Here, we present a genuine 2D quantum walk with correlated photons on a triangular photonic lattice, which can be mapped to a state space up to 37X37 dimensions. This breaks through the physically restriction of single-particle evolution, which can encode information in a large space and constitute high-dimensional graphs indeed beneficial to quantum information processing. A site-by-site addressing between the chip facet and the 2D fanout interface enables an observation of over 600 non-classical interferences simultaneously, violating a classical limit up to 57 standard deviations. Our platform offers a promising prospect for multi-photon quantum walks in a large-scale 2D arrangement, paving the way for practical quantum simulation and quantum computation beyond classical regime.
We study coupled unstaggered-staggered soliton pairs emergent from a system of two coupled discrete nonlinear Schr{o}dinger (DNLS) equations with the self-attractive on-site self-phase-modulation nonlinearity, coupled by the repulsive cross-phase-mod ulation interaction, on 1D and 2D lattice domains. These mixed modes are of a symbiotic type, as each component in isolation may only carry ordinary unstaggered solitons. While most work on DNLS systems addressed symmetric on-site-centered fundamental solitons, these models give rise to a variety of other excited states, which may also be stable. The simplest among them are antisymmetric states in the form of discrete twisted solitons, which have no counterparts in the continuum limit. In the extension to 2D lattice domains, a natural counterpart of the twisted states are vortical solitons. We first introduce a variational approximation (VA) for the solitons, and then correct it numerically to construct exact stationary solutions, which are then used as initial conditions for simulations to check if the stationary states persist under time evolution. Two-component solutions obtained include (i) 1D fundamental-twisted and twisted-twisted soliton pairs, (ii) 2D fundamental-fundamental soliton pairs, and (iii) 2D vortical-vortical soliton pairs. We also highlight a variety of other transient dynamical regimes, such as breathers and amplitude death. The findings apply to modeling binary Bose-Einstein condensates, loaded in a deep lattice potential, with identical or different atomic masses of the two components, and arrays of bimodal optical waveguides.
154 - Eugenio Roldan , , J.C. Soriano 2005
We propose an optical cavity implementation of the two-dimensional coined quantum walk on the line. The implementation makes use of only classical resources, and is tunable in the sense that a large number of different unitary transformations can be implemented by tuning some parameters of the device.
We experimentally demonstrate a quantum walk on a line in phase space using one and two trapped ion. A walk with up to 23 steps is realized by subjecting an ion to state-dependent displacement operations interleaved with quantum coin tossing operatio ns. To analyze the ions motional state after each step we apply a technique that directly maps the probability density distribution onto the ions internal state. The measured probability distributions and the positions second moment clearly show the non-classical character of the quantum walk. To further highlight the difference between the classical (random) and the quantum walk, we demonstrate the reversibility of the latter. Finally, we extend the quantum walk by using two ions, giving the walker the additional possibility to stay instead of taking a step.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا