ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder induced localization and enhancement of entanglement in one- and two-dimensional quantum walks

262   0   0.0 ( 0 )
 نشر من قبل C. M. Chandrashekar
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The time evolution of one- and two-dimensional discrete-time quantum walk with increase in disorder is studied. We use spatial, temporal and spatio-temporal broken periodicity of the unitary evolution as disorder to mimic the effect of disordered/random medium in our study. Disorder induces a dramatic change in the interference pattern leading to localization of the quantum walks in one- and two-dimensions. Spatial disorder results in the decreases of the particle and position entanglement in one-dimension and counter intuitively, an enhancement in entanglement with temporal and spatio-temporal disorder is seen. The study signifies that the Anderson localization of quantum state without compromising on the degree of entanglement could be implement in a large variety of physical settings where quantum walks has been realized. The study presented here could make it feasible to explore, theoretically and experimentally the interplay between disorder and entanglement. This also brings up a variety of intriguing questions relating to the negative and positive implications on algorithmic and other applications.



قيم البحث

اقرأ أيضاً

Entanglement generation in discrete time quantum walks is deemed to be another key property beyond the transport behaviors. The latter has been widely used in investigating the localization or topology in quantum walks. However, there are few experim ents involving the former for the challenges in full reconstruction of the final wave function. Here, we report an experiment demonstrating the enhancement of the entanglement in quantum walks using dynamic disorder. Through reconstructing the local spinor state for each site, von Neumann entropy can be obtained and used to quantify the coin-position entanglement. We find that the enhanced entanglement in the dynamically disordered quantum walks is independent of the initial state, which is different from the entanglement generation in the Hadamard quantum walks. Our results are inspirational for achieving quantum computing based on quantum walks.
The phenomenon of localization usually happens due to the existence of disorder in a medium. Nevertheless, certain quantum systems allow dynamical localization solely due to the nature of internal interactions. We study a discrete time quantum walker which exhibits disorder free localization. The quantum walker moves on a one-dimensional lattice and interacts with on-site spins by coherently rotating them around a given axis at each step. Since the spins do not have dynamics of their own, the system poses the local spin components along the rotation axis as an extensive number of conserved moments. When the interaction is weak, the spread of the walker shows subdiffusive behaviour having downscaled ballistic tails in the evolving probability distribution at intermediate time scales. However, as the interaction gets stronger the walker gets exponentially localized in the complete absence of disorder in both lattice and initial state. Using a matrix-product-state ansatz, we investigate the relaxation and entanglement dynamics of the on-site spins due to their coupling with the quantum walker. Surprisingly, we find that even in the delocalized regime, entanglement growth and relaxation occur slowly unlike marjority of the other models displaying a localization transition.
The symmetries associated with discrete-time quantum walks (DTQWs) and the flexibilities in controlling their dynamical parameters allow to create a large number of topological phases. An interface in position space, which separates two regions with different topological numbers, can, for example, be effectively modelled using different coin parameters for the walk on either side of the interface. Depending on the neighbouring numbers, this can lead to localized states in one-dimensional configurations and here we carry out a detailed study into the strength of such localized states. We show that it can be related to the amount of entanglement created by the walks, with minima appearing for strong localizations. This feature also persists in the presence of small amounts of $sigma_x$ (bit flip) noise.
101 - Longwen Zhou 2021
Time-periodic driving fields could endow a system with peculiar topological and transport features. In this work, we find dynamically controlled localization transitions and mobility edges in non-Hermitian quasicrystals via shaking the lattice period ically. The driving force dresses the hopping amplitudes between lattice sites, yielding alternate transitions between localized, mobility edge and extended non-Hermitian quasicrystalline phases. We apply our Floquet engineering approach to five representative models of non-Hermitian quasicrystals, obtain the conditions of photon-assisted localization transitions and mobility edges, and find the expressions of Lyapunov exponents for some models. We further introduce topological winding numbers of Floquet quasienergies to distinguish non-Hermitian quasicrystalline phases with different localization nature. Our discovery thus extend the study of quasicrystals to non-Hermitian Floquet systems, and provide an efficient way of modulating the topological and transport properties of these unique phases.
We investigate the impact of decoherence and static disorder on the dynamics of quantum particles moving in a periodic lattice. Our experiment relies on the photonic implementation of a one-dimensional quantum walk. The pure quantum evolution is char acterized by a ballistic spread of a photons wave packet along 28 steps. By applying controlled time-dependent operations we simulate three different environmental influences on the system, resulting in a fast ballistic spread, a diffusive classical walk and the first Anderson localization in a discrete quantum walk architecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا