ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - Bruno Bouchard 2014
We consider the minimal super-solution of a backward stochastic differential equation with constraint on the gains-process. The terminal condition is given by a function of the terminal value of a forward stochastic differential equation. Under bound edness assumptions on the coefficients, we show that the first component of the solution is Lipschitz in space and 1/2-Holder in time with respect to the initial data of the forward process. Its path is continuous before the time horizon at which its left-limit is given by a face-lifted version of its natural boundary condition. This first component is actually equal to its own face-lift. We only use probabilistic arguments. In particular, our results can be extended to certain non-Markovian settings.
We consider the problem of option hedging in a market with proportional transaction costs. Since super-replication is very costly in such markets, we replace perfect hedging with an expected loss constraint. Asymptotic analysis for small transactions is used to obtain a tractable model. A general expansion theory is developed using the dynamic programming approach. Explicit formulae are also obtained in the special cases of an exponential or power loss function. As a corollary, we retrieve the asymptotics for the exponential utility indifference price.
We study a stochastic game where one player tries to find a strategy such that the state process reaches a target of controlled-loss-type, no matter which action is chosen by the other player. We provide, in a general setup, a relaxed geometric dynam ic programming principle for this problem and derive, for the case of a controlled SDE, the corresponding dynamic programming equation in the sense of viscosity solutions. As an example, we consider a problem of partial hedging under Knightian uncertainty.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا