ﻻ يوجد ملخص باللغة العربية
We consider the minimal super-solution of a backward stochastic differential equation with constraint on the gains-process. The terminal condition is given by a function of the terminal value of a forward stochastic differential equation. Under boundedness assumptions on the coefficients, we show that the first component of the solution is Lipschitz in space and 1/2-Holder in time with respect to the initial data of the forward process. Its path is continuous before the time horizon at which its left-limit is given by a face-lifted version of its natural boundary condition. This first component is actually equal to its own face-lift. We only use probabilistic arguments. In particular, our results can be extended to certain non-Markovian settings.
In this paper, we first study one-dimensional quadratic backward stochastic differential equations driven by $G$-Brownian motions ($G$-BSDEs) with unbounded terminal values. With the help of a $theta$-method of Briand and Hu [4] and nonlinear stochas
In this Note we study a class of BSDEs which admits a particular singularity in their driver. More precisely, we assume that the driver is not integrable and degenerates when approaching to the terminal time of the equation.
We introduce a new class of Backward Stochastic Differential Equations in which the $T$-terminal value $Y_{T}$ of the solution $(Y,Z)$ is not fixed as a random variable, but only satisfies a weak constraint of the form $E[Psi(Y_{T})]ge m$, for some (
In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The
In this note, we prove that if $g$ is uniformly continuous in $z$, uniformly with respect to $(oo,t)$ and independent of $y$, the solution to the backward stochastic differential equation (BSDE) with generator $g$ is unique.