ترغب بنشر مسار تعليمي؟ اضغط هنا

Many astronomers now participate in large international collaborations, and it is important to examine whether these structures foster a scientific climate that is inclusive and diverse. The Committee on the Participation of Women in the Sloan Digita l Sky Survey (CPWS) was formed to evaluate the demographics and gender climate within SDSS-IV, one of the largest and most geographically distributed astronomical collaborations. In April 2014, the CPWS administered a demographic survey to establish a baseline for the incipient SDSS-IV. We received responses from 250 participants (46% of the active membership). Half of the survey respondents were located in the US or Canada and 30% were based in Europe. Eleven percent of survey respondents considered themselves to be an ethnic minority at their current institution. Twenty-five percent of the SDSS-IV collaboration members are women, a fraction that is consistent with the US astronomical community, but substantially higher than the fraction of women in the IAU (16%). Approximately equal fractions of men and women report holding positions of leadership. When binned by academic age and career level, men and women also assume leadership roles at approximately equal rates, in a way that increases steadily for both genders with increasing seniority. In this sense, SDSS-IV has been successful in recruiting leaders that are representative of the collaboration. Yet, more progress needs to be made towards achieving gender balance and increasing diversity in the field of astronomy, and there is still room for improvement in the membership and leadership of SDSS-IV. For example, at the highest level of SDSS-IV leadership, women disproportionately assume roles related to education and public outreach. The CPWS plans to use these initial data to establish a baseline for tracking demographics over time as we work to assess and improve the climate of SDSS-IV.
We present an analysis of $sim$1500 H160-selected photometric galaxies detected to a limiting magnitude of 27.8 in the HUDF, using imaging from the HST WFC3/IR camera in combination with archival UV, optical, and NIR imaging. We fit photometric redsh ifts and stellar population estimates for all galaxies with well-determined Spitzer IRAC fluxes, allowing for the determination of the cumulative mass function within the range $1<z<6$. By selecting samples of galaxies at a constant cumulative number density, we explore the co-evolution of stellar masses and star formation rates from z$sim$6. We find a steady increase in the SFRs of galaxies at constant number density from z$sim$6 to z$sim$3. The peak epoch of star formation is found to shift to later times for galaxies with increasing number densities, in agreement with the expectations from cosmic downsizing. The observed SFRs can fully account for the mass growth to z$sim$2 amongst galaxies with cumulative number densities greater than 10$^{-3.5}$ Mpc$^{-3}$. For galaxies with a lower constant number density we find the observed stellar masses are $sim$3 times greater than that which may be accounted for by the observed star formation alone at late times, implying that growth from mergers plays an important role at $z<2$. We additionally observe a decreasing sSFR, equivalent to approximately one order of magnitude, from z$sim$6 to z$sim$2 amongst galaxies with number densities less than 10$^{-3.5}$ Mpc$^{-3}$ along with significant evidence that at any redshift the sSFR is higher for galaxies at higher number density. The combination of these findings can qualitatively explain the previous findings of a sSFR plateau at high redshift. Tracing the evolution of the fraction of quiescent galaxies for samples matched in cumulative number density over this redshift range, we find no unambiguous examples of quiescent galaxies at $z>4$.
We present evidence of large-scale outflows from three low-mass (log(M/M_sun)~9.75) star-forming (SFR >4 M_sun/yr) galaxies observed at z=1.24, z=1.35 and z=1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical dist ance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W_r>0.8A) Mg II absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the H-alpha emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well-exceeds 0.1 M_sun/yr/kpc^2, the typical threshold for starburst galaxies in the local Universe. From a small but complete parallel census of the 0.65<z<2.6 galaxies with H_140<24 proximate to the quasar sight line, we detect Mg II absorption associated with galaxies extending to physical distances of 130 kpc. We determine that the W_r>0.8A Mg II covering fraction of star-forming galaxies at 1<z<2 may be as large as unity on scales extending to at least 60 kpc, providing early constraints on the typical extent of starburst-driven winds around galaxies at this redshift. Our observations additionally suggest that the azimuthal distribution of W_r>0.4A Mg II absorbing gas around star-forming galaxies may evolve from z~2 to the present, consistent with recent observations of an increasing collimation of star formation-driven outflows with time from z~3.
Strong foreground absorption features from singly-ionized Magnesium (Mg II) are commonly observed in the spectra of quasars and are presumed to probe a wide range of galactic environments. To date, measurements of the average dark matter halo masses of intervening Mg II absorbers by way of large-scale cross-correlations with luminous galaxies have been limited to z<0.7. In this work we cross-correlate 21 strong (W{lambda}2796>0.6 {deg}A) Mg II absorption systems detected in quasar spectra from the Sloan Digital Sky Survey Data Release 7 with ~32,000 spectroscopically confirmed galaxies at 0.7<z<1.45 from the DEEP2 galaxy redshift survey. We measure dark matter (DM) halo biases of b_G=1.44pm0.02 and b_A=1.49pm0.45 for the DEEP2 galaxies and Mg II absorbers, respectively, indicating that their clustering amplitudes are roughly consistent. Haloes with the bias we measure for the Mg II absorbers have a corresponding mass of 1.8(+4.2/-1.6) times 10^12h-1M_sun, although the actual mean absorber halo mass will depend on the precise distribution of absorbers within DM haloes. This mass estimate is consistent with observations at z=0.6, suggesting that the halo masses of typical Mg II absorbers do not significantly evolve from z~1. We additionally measure the average W{lambda}2796>0.6 AA gas covering fraction to be f =0.5 within 60 h-1kpc around the DEEP2 galaxies, and we find an absence of coincident strong Mg II absorption beyond a projected separation of ~40 h-1kpc. Although the star-forming z>1 DEEP2 galaxies are known to exhibit ubiquitous blueshifted Mg II absorption, we find no direct evidence in our small sample linking W{lambda}2796>0.6 AA absorbers to galaxies with ongoing star formation.
We analyze the cross-correlation of 2,705 unambiguously intervening Mg II (2796,2803A) quasar absorption line systems with 1,495,604 luminous red galaxies (LRGs) from the Fifth Data Release of the Sloan Digital Sky Survey within the redshift range 0. 36<=z<=0.8. We confirm with high precision a previously reported weak anti-correlation of equivalent width and dark matter halo mass, measuring the average masses to be log M_h(M_[solar]h^-1)=11.29 [+0.36,-0.62] and log M_h(M_[solar]h^-1)=12.70 [+0.53,-1.16] for systems with W[2796A]>=1.4A and 0.8A<=W[2796A]<1.4A, respectively. Additionally, we investigate the significance of a number of potential sources of bias inherent in absorber-LRG cross-correlation measurements, including absorber velocity distributions and the weak lensing of background quasars, which we determine is capable of producing a 20-30% bias in angular cross-correlation measurements on scales less than 2. We measure the Mg II - LRG cross-correlation for 719 absorption systems with v<60,000 km s^-1 in the quasar rest frame and find that these associated absorbers typically reside in dark matter haloes that are ~10-100 times more massive than those hosting unambiguously intervening Mg II absorbers. Furthermore, we find evidence for evolution of the redshift number density, dN/dz, with 2-sigma significance for the strongest (W>2.0A) absorbers in the DR5 sample. This width-dependent dN/dz evolution does not significantly affect the recovered equivalent width-halo mass anti-correlation and adds to existing evidence that the strongest Mg II absorption systems are correlated with an evolving population of field galaxies at z<0.8, while the non-evolving dN/dz of the weakest absorbers more closely resembles that of the LRG population.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا