ترغب بنشر مسار تعليمي؟ اضغط هنا

The fact that a magnetic field in a fermion system breaks the spherical symmetry suggest that the intrinsic geometry of this system is axisymmetric rather than spherical. In this work we analyze the impact of anisotropic pressures, due to the presenc e of a magnetic field, in the structure equations of a magnetized quark star. We assume a cylindrical metric and an anisotropic energy momentum tensor for the source. We found that there is a maximum magnetic field that the star can sustain, closely related to the violation of the virial relations.
We investigate the quantum corrections of the anomalous magnetic moment (AMM) for fermions in the presence of a strong magnetic field using the Rituss approach. At strong fields the particles get different AMMs depending on the LLs. This result is di fferent from what is obtained with the Schwingers approximation at weak field where the AMM is independent of the LL. We analyze the significance of the AMM contribution to the Equation of State (EoS) of the magnetized system, in the weak and strong field approximations.
We start from any small strict monoidal braided Ab-category and extend it to a monoidal nonstrict braided Ab-category which contains braided bialgebras. The objects of the original category turn out to be modules for these bialgebras
211 - D.P.Menezes 2008
In the present work we use the large-$N_c$ approximation to investigate quark matter described by the SU(2) Nambu--Jona-Lasinio model subject to a strong magnetic field. The Landau levels are filled in such a way that usual kinks appear in the effect ive mass and other related quantities. $beta$-equilibrium is also considered and the macroscopic properties of a magnetar described by this quark matter is obtained. Our study shows that the magnetar masses and radii are larger if the magnetic field increases but only very large fields ($ge 10^{18}$ G) affect the EoS in a non negligible way.
The dynamics of a self-gravitating neutron gas in presence of a magnetic field is being studied taking the equation of state of a magnetized neutron gas obtained in a previous study [2]. We work in a Bianchi I spacetime characterized by a Kasner metr ic, this metric allow us to take into account the anisotropy that introduces the magnetic field. The set of Einstein-Maxwell field equations for this gas becomes a dynamical system in a 4-dimensional phase space. We get numerical solutions of the system. In particular there is a unique point like solution for different initial conditions. Physically this singular solution may be associated with the collapse of a local volume of neutron material within a neutron star.
The problem of anisotropic pressures arising as a consequence of the spatial symmetry breaking introduced by an external magnetic field in quantum systems is discussed. The role of the conservation of energy and momentum of external fields as well as of systems providing boundary conditions in quantum statistics is considered. The vanishing of the average transverse momentum for an electron-positron system in its Landau ground state is shown, which means the vanishing of its transverse pressure. The situation for neutron case and Strange Quark Matter (SQM) in $beta$-equilibrium is also briefly discussed. Thermodynamical relations in external fields as well as the form of the stress tensor in a quantum relativistic medium are also discussed. The ferromagnetic symmetry breaking is briefly discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا