ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic stellar structure equations for magnetized stars

43   0   0.0 ( 0 )
 نشر من قبل Aurora Perez Martinez Prof
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fact that a magnetic field in a fermion system breaks the spherical symmetry suggest that the intrinsic geometry of this system is axisymmetric rather than spherical. In this work we analyze the impact of anisotropic pressures, due to the presence of a magnetic field, in the structure equations of a magnetized quark star. We assume a cylindrical metric and an anisotropic energy momentum tensor for the source. We found that there is a maximum magnetic field that the star can sustain, closely related to the violation of the virial relations.

قيم البحث

اقرأ أيضاً

Periodic changes in a thermal soft X-ray flux of a rotating neutron star indicate a non-uniform distribution of the surface temperature. A possible cause of this phenomenon is a suppression of the heat flux across the magnetic field lines in a crust and an envelope of magnetized neutron stars. In this paper we study three-dimensional effects, associated with non-axisymmetric magnetic fields in neutron stars. We calculate the surface temperature distribution by solving numerically a three dimensional heat transfer equation in a magnetized neutron star crust. We adopt an anisotropic (tensorial) electron thermal conductivity coefficient, which is derived as an analytical solution of the Boltzmann equation with a Chapman-Enskog method. To calculate the surface temperature distribution, we construct a local one-dimensional plane-parallel model (Ts-Tb-relationship) of a magnetized neutron star envelope. We then use it as an outer boundary condition for the three-dimensional problem in the crust to find the self-consistent solution. To study possible observational manifestations from anisotropic temperature distributions we calculate light curves with a composite black-body model. Our calculations show, that a non-axisymmetric magnetic field distribution can lead to the irregular non-sinusoidal shape of a pulse profile as well as in some cases a significant amplification of pulsations of the thermal flux in comparison to the pure-dipolar magnetic field configurations.
The accretion flow around X-ray pulsars with a strong magnetic field is funnelled by the field to relatively small regions close to the magnetic poles of the neutron star (NS), the hotspots. During strong outbursts regularly observed from some X-ray pulsars, the X-ray luminosity can be so high, that the emerging radiation is able to stop the accreting matter above the surface via radiation-dominated shock, and the accretion column begins to rise. This border luminosity is usually called the critical luminosity. Here we calculate the critical luminosity as a function of the NS magnetic field strength $B$ using exact Compton scattering cross section in strong magnetic field. Influence of the resonant scattering and photon polarization is taken into account for the first time. We show that the critical luminosity is not a monotonic function of the B-field. It reaches a minimum of a few 10^{36} erg s^{-1} when the cyclotron energy is about 10 keV and a considerable amount of photons from a hotspot have energy close to the cyclotron resonance. For small B, this luminosity is about 10^{37} erg s^{-1}, nearly independent of the parameters. It grows for the B-field in excess of 10^{12} G because of the drop in the effective cross-section of interaction below the cyclotron energy. We investigate how different types of the accretion flow and geometries of the accretion channel affect the results and demonstrate that the general behaviour of the critical luminosity on B-field is very robust. The obtained results are shown to be in a good agreement with the available observational data and provide a necessary ground for the interpretation of upcoming high quality data from the currently operating and planned X-ray telescopes.
We study stable spheroidal configurations of magnetized Strange Stars using an axially symmetric metric in spherical coordinates that uses a gamma parameter to link the anisotropy in the Equation of State due to the magnetic field with the deformatio n of the star. The stars are composed by magnetized Strange Quark Matter described within the framework of the MIT-Bag model. Their masses, radii, eccentricity, redshift and mass quadrupole moment are computed. Results are compared with spherical Strange Stars solutions obtained with TOV equations and observational data of Strange Stars candidates. In the spheroidal model the observables depend directly on the deformation of the stars, and even though it is small, the observables strongly deviate from the corresponding spherical configurations. Thus, the highest values of the mass quadrupole moment correspond to the intermediate mass regime. These differences might allow to discriminate between models with/without magnetic field when compared with observations.
120 - S. Lizano , C. Tapia , Y. Boehler 2015
We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $lambda_{sys} = 4$ (strongly magnetized disks), and $lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass ($sim 90-95$ %) is in the disk midplane. With the advent of ALMA one expects direct measurements of magnetic fields and their morphology at disk scales. It will then be possible to determine the mass-to-flux ratio of magnetized accretion disks around young stars, an essential parameter for their structure and evolution. Our models contribute to the understanding of the vertical structure and emission of these disks.
Pulsars are highly magnetized and rapidly rotating neutron stars. The magnetic field can reach the critical magnetic field from which quantum effects of the vacuum becomes relevant, giving rise to magnetooptic properties of vacuum characterized as an effective non linear medium. One spectacular consequence of this prediction is a macroscopic friction that leads to an additional contribution in the spindown of pulsars. In this paper, we highlight some observational consequences and in particular derive new constraints on the parameters of the Crab pulsar and J0540-6919.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا