ترغب بنشر مسار تعليمي؟ اضغط هنا

We study nonlinear dynamics of exciton-polaritons in an incoherently pumped semiconductor microcavity with embedded weak-contrast lattice and coupled to an exciton reservoir. We elucidate fundamental features of non-equilibrium exciton-polariton cond ensate trapped in one-dimensional periodical potential close to zero momentum (so-called Zero-state) and to the state at the boundary of Brillouin zone ($pi$-state). Within the framework of the mean-field theory, we identify different regimes of both relaxation and oscillatory dynamics of coherent exciton-polaritons governed by superpositions of Bloch eigenstates within the periodic lattice. In particular, we theoretically demonstrate stable macroscopical oscillations, akin to nonlinear Josephson oscillations, between different spectral components of a polariton condensate in the momenta-space. We elucidate a strong influence of the dissipative effects and the feedback induced by the inhomogeneity of incoherent reservoir on the dynamics of the coherent polaritons.
We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on incoherent excitonic reserv oir engineering. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time (PT) symmetry of the coupled exciton-photon system realised in a specific regime of pumping to the exciton state and depletion of the reservoir. For effective non-zero exciton-photon detuning, permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realisation of integrated circuits based on exciton-polariton condensates.
We propose a novel mechanism for designing quantum hyperbolic metamaterials with use of semi-conductor Bragg mirrors containing periodically arrangedquantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the f irst allowed photonic miniband in such structure which leads to formation of exciton-polariton X-waves. Exciton-light coupling provides a resonant non-linearity which leads to non-trivial topologic solutions. We predict formation of low amplitude spatially localized oscillatory structures: oscillons described by kink shaped solutions of the effective Ginzburg-Landau-Higgs equation. The oscillons have direct analogies in the gravita-tional theory. We discuss implementation of exciton-polariton Higgs fields for the Schrodinger cat state generation.
Considering two-level media in the array of weakly coupled nano-cavities, we reveal a variety of dynamical regimes, such as diffusion, self-trapping, soliton, and breathers for the wave-packets in the presence of photon tunneling processes between th e next-nearest cavities. We focus our attention on the low branch (LB) bright polariton soliton formation, due to the two-body polariton-polariton scattering processes. When detuning frequency is manipulated adiabatically, the low-branch lattice polariton localized states, i.e., that are solitons and breathers evolving between photon-like and matter-like states, are shown to act as carriers for spatially distributed storage and retrieval of optical information.
We consider the fundamental problem of high temperature phase transitions in the system of high density two-level atoms off-resonantly interacting with a pump field in the presence of optical collisions (OCs) and placed in the cavity. OCs are conside red in the framework of thermalization of atomic dressed state (DS) population. For the case of a strong atom-field coupling condition we analyze the problem of thermodynamically equilibrium superradiant phase transition for the order parameter representing a real amplitude of cavity mode and taking place as a result of atomic DSs thermalization process. Such transition is also connected with condensed (coherent) properties of low branch (LB) DS-polaritons occurring in the cavity. For describing non-equilibrium phase transitions we derive Maxwell-Bloch like equations which account for cavity decay rate, collisional decay rate and spontaneous emission. Various aspects of transitions to laser field formation by using atomic DS levels for both positive and negative detuning of a pump field from atomic transition frequency are studied in detail. It is revealed, that for positive atom-light detuning DS lasing can be obtained in the presence of quasi-equilibrium DS population that corresponds to a true two-level atomic system with the inversion in nonresonant limit.
We reveal the existence of polariton soliton solutions in the array of weakly coupled optical cavities, each containing an ensemble of interacting qubits. An effective complex Ginzburg-Landau equation is derived in the continuum limit taking into acc ount the effects of cavity field dissipation and qubit dephasing. We have shown that an enhancement of the induced nonlinearity can be achieved by two order of the magnitude with a negative interaction strength which implies a large negative qubit-field detuning as well. Bright solitons are found to be supported under perturbations only in the upper (optical) branch of polaritons, for which the corresponding group velocity is controlled by tuning the interacting strength. With the help of perturbation theory for solitons, we also demonstrate that the group velocity of these polariton solitons is suppressed by the diffusion process.
We study the problem of high temperature Bose-Einstein condensation (BEC) of atom-light polaritons in a waveguide cavity appearing due to interaction of two-level atoms with (non-resonant) quantized optical radiation, in the strong coupling regime, i n the presence of optical collisions (OCs) with buffer gas particles. Specifically, we propose a special biconical waveguide cavity (BWC), permitting localization and trapping of low branch (LB) polaritons imposed by the variation of the waveguide radius in longitudinal direction. We have shown that critical temperature of BEC occurring in the system can be high enough -- few hundred Kelvins; it is connected with photon-like character of LB polaritons and strongly depends on waveguide cavity parameters. In the case of a linear trapping potential we obtain an Airy-shaped polariton condensate wave function which, when disturbed out of equilibrium, exhibits small amplitude oscillations with the characteristic period in the picosecond domain.
Coherent properties of a two dimensional spatially periodic structure - polaritonic crystal (PolC) formed by trapped two-level atoms in an optical cavity array interacting with a light field, are analyzed. By considering the wave function overlapping both for photonic and atomic states, a cubic-quintic complex nonlinear Schrodinger equation (CNLSE) is derived for the dynamics of coupled atom-light states - wave function of low branch (LB) polaritons, associated with PolC in the continuous limit. The variational approach predicts that a stable ground state wave function of PolC exists but is accompanied by an oscillating width. For a negative scattering length, the wave function collapses in the presence of a small quintic nonlinearity appear due to a three body polariton interaction. Studying non-equilibrium (dissipative) dynamics of polaritons with adiabatic approximation we have shown that the collapse of PolC wave function can be prevented even in the presence of small decaying of a number of polariton particles.
The problem of photonic phase transition for the system of a two-level atomic ensemble interacting with a quantized single-mode electromagnetic field in the presence of optical collisions (OC) is considered. We have shown that for large and negative atom-field detuning a photonic field exhibits high temperature second order phase transition to superradiant state under thermalization condition for coupled atom-light states. Such a transition can be connected with superfluid (coherent) properties of photon-like low branch (LB) polaritons. We discuss the application of metallic cylindrical waveguide for observing predicted effects.
We propose a new type of spatially periodic structure, i.e. polaritonic crystal (PolC), to observe a slow/stopped light phenomenon due to coupled atom-field states (polaritons) in a lattice. Under the tightbinding approximation, such a system realize s an array of weakly coupled trapped two-component atomic ensembles interacting with optical field in a tunnel-coupled one dimensional cavity array. We have shown that the phase transition to the superfluid Bardeen-Cooper-Schrieffer state, a so-called (BCS)-type state of low branch polaritons, occurs under the strong coupling condition. Such a transition results in the appearance of a macroscopic polarization of the atomic medium at non-zero frequency. The principal result is that the group velocity of polaritons depends essentially on the order parameter of the system, i.e. on the average photon number in the cavity array.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا