ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly localized polaritons in an array of trapped two-level atoms interacting with a light field

206   0   0.0 ( 0 )
 نشر من قبل Andrey Leksin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new type of spatially periodic structure, i.e. polaritonic crystal (PolC), to observe a slow/stopped light phenomenon due to coupled atom-field states (polaritons) in a lattice. Under the tightbinding approximation, such a system realizes an array of weakly coupled trapped two-component atomic ensembles interacting with optical field in a tunnel-coupled one dimensional cavity array. We have shown that the phase transition to the superfluid Bardeen-Cooper-Schrieffer state, a so-called (BCS)-type state of low branch polaritons, occurs under the strong coupling condition. Such a transition results in the appearance of a macroscopic polarization of the atomic medium at non-zero frequency. The principal result is that the group velocity of polaritons depends essentially on the order parameter of the system, i.e. on the average photon number in the cavity array.



قيم البحث

اقرأ أيضاً

We present a proposal for the realization of entanglement Hamiltonians in one-dimensional critical spin systems with strongly interacting cold atoms. Our approach is based on the notion that the entanglement spectrum of such systems can be realized w ith a physical Hamiltonian containing a set of position-dependent couplings. We focus on reproducing the universal ratios of the entanglement spectrum for systems in two different geometries: a harmonic trap, which corresponds to a partition embedded in an infinite system, and a linear potential, which reproduces the properties of a half-partition with open boundary conditions. Our results demonstrate the possibility of measuring the entanglement spectra of the Heisenberg and XX models in a realistic cold-atom experimental setting by simply using gravity and standard trapping techniques.
We present a coupled pair approach for studying few-body physics in harmonically trapped ultracold gases. The method is applied to a two-component Fermi system of $N$ particles. A stochastically variational gaussian expansion method is applied, focus ing on optimization of the two-body correlations present in the strongly interacting, or unitary, limit. The groundstate energy of the four-, six- and eight-body problem with equal spin populations is calculated with high accuracy and minimal computational effort. We also calculate the structural properties of these systems and discuss their implication for the many-body ultracold gas and other few-body calculations.
136 - Sagarika Basak , Han Pu 2021
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa me site and neighboring sites leads to substantial change in the previously observed spin phases revealing fascinating remarkable spin correlations. In the presence of strong interactions it gives rise to unconventional effective ordering of the spins leading to unprecedented spin phases: site-dependent $ztextsf{-}x$ spin configuration with tunable (by hopping parameter) proclivity of spin alignment along $z$. Exact analysis and Variational Monte Carlo (VMC) along with stochastic minimization on Entangled Plaquette State (EPS) bestow a unique and enhanced perspective into the system beyond the scope of mean-field treatment. The physics of complex intra-component tunneling and inter-component coupling and filling factor greater than unity are discussed.
93 - Fan Wu , Jianshen Hu , Lianyi He 2019
We propose a minimal theoretical model for the description of a two-dimensional (2D) strongly interacting Fermi gas confined transversely in a tight harmonic potential, and present accurate predictions for its equation of state and breathing mode fre quency. We show that the minimal model Hamiltonian needs at least two independent interaction parameters, the 2D scattering length and effective range of interactions, in order to quantitatively explain recent experimental measurements at nonzero filling factor $N/N_{2D}$, where $N$ is the total number of atoms and $N_{2D}$ is the threshold number to reach the 2D limit. We therefore resolve in a satisfactory way the puzzling experimental observations of reduced equations of state and reduced quantum anomaly in breathing mode frequency, due to small yet non-negligible $N/N_{2D}$. We argue that a conclusive demonstration of the much-anticipated quantum anomaly is possible at a filling factor of a few percent. Our establishment of the minimal model for 2D ultracold atoms could be crucial to understanding the fermionic Berezinskii-Kosterlitz-Thouless transition in the strongly correlated regime.
Employing a short-range two-channel description we derive an analytic model of atoms in isotropic and anisotropic harmonic traps at a Feshbach resonance. On this basis we obtain a new parameterization of the energy-dependent scattering length which d iffers from the one previously employed. We validate the model by comparison to full numerical calculations for Li-Rb and explain quantitatively the experimental observation of a resonance shift and trap-induced molecules in exited bands. Finally, we analyze the bound state admixture and Landau-Zener transition probabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا